

2

This document is revision 14 (2008.08.20).

Copyright ©2008 Runtime Revolution Ltd. All rights reserved worldwide.

3

CHAPTER 1  INTRODUCTION 15 

1.1  Welcome...16 

1.2  Where to Begin ..17 

1.3  System Requirements..17 
1.3.1  All Operating Systems ..17 
1.3.2  Requirements for Windows Systems ..17 
1.3.3  Requirements for Linux Systems ..18 
1.3.4  Requirements for Mac OS X Systems...18 
1.3.5  Requirements for Deployment on Mac OS Classic Systems ..18 

1.4  Installation Instructions ...19 

1.5  Registration and Updates ...19 

1.6  Using the Documentation ...20 
1.6.1  Documentation Conventions ...20 
1.6.2  Navigating the Documentation..21 
1.6.3  Start Center..21 
1.6.4  Resource Center ..23 
1.6.5  Dictionary..25 
1.6.6  User's Guide ..31 

1.7  Additional Resources ..31 
1.7.1  Developer Community ..31 
1.7.2  Technical Support ...32 

CHAPTER 2  GETTING STARTED 33 
2.1.1  Prerequisites ..34 
2.1.2  Event Driven Programming ..34 
2.1.3  Object-Based Programming ..34 
2.1.4  The ‘Edit’ and ‘Run’ Mode...35 

2.2  Structuring your Application...36 
2.2.1  Cards, Stacks & Files ..36 
2.2.2  The Structure of a Stack File...36 
2.2.3  Opening a Stack File ...37 
2.2.4  Main Stacks and Substacks ...37 
2.2.5  Stacks, Stack Files, and Memory ..38 
2.2.6  Media & Resources ...38 
2.2.7  How to Use External Files ..39 
2.2.8  When to use a Database ..40 
2.2.9  Revolution Memory Limits ...41 

CHAPTER 3  THE DEVELOPMENT ENVIRONMENT 42 

3.1  The Menu Bar..43 
3.1.1  The File Menu ...43 
3.1.2  The Edit Menu...45 

4

3.1.3  The Tools Menu ..46 
3.1.4  The Object Menu...47 
3.1.5  The Text Menu ..49 
3.1.6  The Development Menu..50 
3.1.7  The View Menu...51 
3.1.8  Window ...52 
3.1.9  The Help Menu..52 

3.2  The Application Browser..52 

3.3  The Properties Inspector ..56 

3.4  The Script Editor...57 

3.5  The Debugger ..61 

3.6  The Script Editor Menubar..68 
3.6.1  The File Menu ...68 
3.6.2  The Edit Menu...69 
3.6.3  The Debug Menu...69 
3.6.4  The Handler Menu ..70 
3.6.5  The Window Menu..70 

3.7  The Message Box...70 
3.7.1  Single and Multiple Line Modes...71 
3.7.2  Global Properties...73 
3.7.3  Global Variables..73 
3.7.4  Pending Messages ...74 
3.7.5  Front Scripts & Back Scripts...74 
3.7.6  Stacks In Use...74 

3.8  The Toolbar ...74 

3.9  Find and Replace...75 

CHAPTER 4  BUILDING A USER INTERFACE 78 

4.1  Creating and Organizing Objects..79 
4.1.1  Creating Controls with the Tools Palette ..79 
4.1.2  Alignment & Layering ..81 
4.1.3  The Keyboard Focus ...83 

4.2  Object & Control Types ...84 
4.2.1  Stacks – for displaying windows, palettes and dialog boxes ..84 
4.2.2  Window Types and the Mode of a Stack ..84 
4.2.3  The Standard Window Types..84 
4.2.4  Editable Windows – for documents ..85 
4.2.5  Modeless Dialog Boxes – for alerts and settings ..86 
4.2.6  Modal Dialog Boxes – for alerts and settings ...87 
4.2.7  Palettes – for accessory and tool windows..88 
4.2.8  Ask Question Dialog – for asking a question..89 
4.2.9  Answer Alert Dialog – for displaying a dialog ...91 
4.2.10  File Selector Dialogs..92 
4.2.11  Color Chooser Dialog..95 

5

4.2.12  Printer Dialogs...96 
4.2.13  Visual Effect Dialog..96 
4.2.14  Alpha Blend Windows – for Enhanced Tooltips and Multimedia ..97 
4.2.15  System Palettes – for utilities floating above applications..98 
4.2.16  Sheet dialog boxes – Mac OS X only ...99 
4.2.17  Drawers – Mac OS X only ..99 
4.2.18  Stack menus – for displaying non-standard menus...100 
4.2.19  Stack Decorations – for Window Appearance ..100 
4.2.20  Button Controls – for performing actions ...102 
4.2.21  Text Field Controls – for displaying or entering text..103 
4.2.22  List and Table Field Controls..103 
4.2.23  Table Field Control – for displaying a table ...104 
4.2.24  Cards..104 
4.2.25  Groups & Backgrounds – for organizing, and sharing controls..105 
4.2.26  Graphics, Images, Players, Audio & Video Clip Objects – for multimedia ...108 
4.2.27  Menu Controls – for displaying choices ...109 
4.2.28  Other Controls ...110 

4.3  Using the Menu Builder..111 

4.4  Using the Geometry Manager..113 

4.5  Using Property Profiles ..115 

4.6  10 Tips for Good User Interface Design..117 

CHAPTER 5  WRITING REVOLUTION CODE 120 

5.1  The Structure of a Script..121 
5.1.1  What is a Script ...121 
5.1.2  The Types of Handler..121 
5.1.3  Message Handlers ...121 
5.1.4  Function Handlers ...121 
5.1.5  GetProp Handlers ..122 
5.1.6  SetProp Handlers...122 
5.1.7  Comments..122 
5.1.8  Compiling a Script ..123 
5.1.9  Summary ...123 

5.2  Events ...124 
5.2.1  What Causes Messages to be Sent ..124 
5.2.2  Responding to Events..124 

5.3  The Message Path..125 
5.3.1  The Object Hierarchy ..125 
5.3.2  The Message Path..125 
5.3.3  The Message Target ..127 
5.3.4  Handlers with the Same Name ..127 
5.3.5  Trapping Messages..128 
5.3.6  Blocking System Messages...128 
5.3.7  Passing a Message to the Next Object ..128 
5.3.8  Selectively Trapping or Passing Messages ...129 
5.3.9  Groups, Backgrounds & The Message Path..129 

6

5.4  Commands and Functions..130 
5.4.1  Using Built-in Commands and functions ..130 
5.4.2  Custom Commands and Functions..131 
5.4.3  Passing Parameters ..133 
5.4.4  Passing Multiple Parameters ...133 
5.4.5  Parameter Variables ..134 
5.4.6  Implicit Parameters ...135 
5.4.7  Passing Parameters by Reference..135 
5.4.8  Returning Values...137 
5.4.9  Returning an Error from a Message Handler ..137 
5.4.10  Summary ...138 

5.5  Variables ..138 
5.5.1  Variable Scope ..139 
5.5.2  Local Variables ...139 
5.5.3  Script Local Variables ...140 
5.5.4  Global Variables..141 
5.5.5  Variable Names ...142 
5.5.6  Special Variable Types..143 
5.5.7  Array Variables ...145 
5.5.8  Constants ...147 

5.6  Containers, Operators & Sources of Value ..148 
5.6.1  What is a Container? ...148 
5.6.2  Setting and Retrieving Data from Containers ...148 
5.6.3  What are Sources of Value? ..149 
5.6.4  Getting and Setting Properties...149 
5.6.5  What are Literal Strings?...149 
5.6.6  Using Literal Strings ...149 
5.6.7  What are Operators?..150 
5.6.8  Numeric Operators ..150 
5.6.9  Logical Operators ..150 
5.6.10  Binary versus Unary Operators ...150 
5.6.11  Conversion of Values ..150 
5.6.12  Operator Precedence ...151 
5.6.13  Using the Grouping Operator () ..152 
5.6.14  Factors and Expressions ..153 
5.6.15  Defining Factors ..153 

5.7  Making Decisions ..154 
5.7.1  If…then…else ...154 
5.7.2  Switch..155 

5.8  Extending the Message Path ..157 
5.8.1  Creating a Code Library ..157 
5.8.2  Using backScripts..157 
5.8.3  Using frontScripts ...158 
5.8.4  Using a Stack's Script with start using..158 
5.8.5  Sending Messages Directly to Objects..158 
5.8.6  The send Command versus the call Command...159 

5.9  Timer Based Messaging..160 
5.9.1  Delivering a Message in the Future...160 
5.9.2  Repeating a Timer Message ..160 
5.9.3  Canceling a Timer Message ..161 

7

5.9.4  Displaying a List of Pending Timer Messages..162 

5.10  Tips for Writing Good Code ..163 

CHAPTER 6  PROCESSING TEXT AND DATA 165 

6.1  Using Chunk Expressions...166 
6.1.1  Types of Chunks..166 
6.1.2  Using Chunks with Containers..166 
6.1.3  Using Chunks with Properties...166 
6.1.4  The Character Chunk ..166 
6.1.5  The Word Chunk...167 
6.1.6  The item Chunk and the itemDelimiter Property ..167 
6.1.7  The line Chunk and the lineDelimiter Property ..167 
6.1.8  The Token Chunk..167 
6.1.9  Specifying a Chunk ...168 
6.1.10  Negative Indexes in Chunk Expressions...168 
6.1.11  Complex Chunk Expressions ..168 
6.1.12  Using Parentheses in Chunk Expressions ...169 
6.1.13  Nonexistent Chunks ..169 
6.1.14  Specifying a Range..170 
6.1.15  Counting the Number of Words, Lines or Items...170 

6.2  Comparing and Searching..171 
6.2.1  Checking if a Part is within a Whole...171 
6.2.2  Case Sensitivity ...171 
6.2.3  Checking if text is True, False, a Number, an Integer, a Point, a Rectangle, a Date or a Color171 
6.2.4  Check if a Word, Item or Line Matches Exactly...172 
6.2.5  Check if one String Starts or Ends With Another ...172 
6.2.6  Replacing Text ..173 
6.2.7  Retrieving the Position of a Matching Chunk...173 
6.2.8  Chunks Summary ..173 

6.3  Regular Expressions ...174 
6.3.1  Searching using a Regular Expression ..174 
6.3.2  Replacing using a Regular Expression..175 
6.3.3  Filtering using a Wildcard Expression ..176 

6.4  International Text Support ..177 
6.4.1  What are Text Encodings? ..177 
6.4.2  What are scripts? ...178 
6.4.3  Introduction to Unicode ..179 
6.4.4  How does Unicode work? ...179 
6.4.5  Using Unicode in Revolution Fields and Objects ...179 
6.4.6  Manipulating Unicode – Using UTF-8 ...180 
6.4.7  Converting between UTF-16 and Other Encodings..180 
6.4.8  Converting between MacRoman and Windows-1252 ..181 

6.5  Using Arrays ..181 
6.5.1  When to Use Arrays ..181 
6.5.2  Array Functions in Revolution..183 

6.6  Encoding and Decoding ..184 
6.6.1  Styled Text ..184 
6.6.2  URLs ...185 

8

6.6.3  Binary Data – Base64 (for MIME Email Attachments and Http Transfers)...185 
6.6.4  Binary Data – Arbitrary Types..185 
6.6.5  Character to Number conversion...185 
6.6.6  Data Compression ...185 
6.6.7  Encryption ...186 
6.6.8  Generating a Checksum ..186 

6.7  XML ...187 
6.7.1  The XML Tree Structure...187 
6.7.2  When to use XML ...188 
6.7.3  Methods for Handling XML in Revolution...188 
6.7.4  The XML Library: Loading, Displaying and Unloading XML ..189 
6.7.5  The XML Library: Editing XML ..197 

6.8  Sorting ..199 
6.8.1  The Sort Container Command: Overview...199 
6.8.2  The Sort Container Command: Using Sort Keys ..200 
6.8.3  The Sort Container Command: Sorting Randomly ...201 
6.8.4  The Sort Container Command: Stable Sorts – Sorting on Multiple Keys ..201 
6.8.5  Sorting Cards...202 

CHAPTER 7  PROGRAMMING A USER INTERFACE 204 

7.1  Referring to Objects..205 
7.1.1  Referring to objects by name ..205 
7.1.2  Referring to objects by number ...205 
7.1.3  Referring to objects by ID...205 
7.1.4  Referring to objects by ordinal..206 
7.1.5  The special descriptor ‘this’ ..206 
7.1.6  Control references ...206 
7.1.7  Nested Object References ...207 

7.2  Properties ...208 
7.2.1  Using Object Properties ..208 
7.2.2  Referring to properties ..209 
7.2.3  Changing properties ..209 
7.2.4  Property Inheritance ..210 
7.2.5  Overriding inheritance...211 

7.3  Global Properties ..211 
7.3.1  Referring to global properties ...212 
7.3.2  Changing global properties ...212 
7.3.3  Saving and restoring global properties..212 

7.4  Text Related Properties ..213 
7.4.1  Text style properties ..213 
7.4.2  Formatted text properties ..214 

7.5  Creating and Deleting Objects...214 
7.5.1  The Create Object Command..215 
7.5.2  The Delete Object Command..215 
7.5.3  Creating Objects Off-screen Using Template Objects ..215 

7.6  Property Arrays using the Properties Property...216 

9

7.7  Property Profiles ...217 
7.7.1  Profile names...217 
7.7.2  The master profile ...217 
7.7.3  Switching between profiles ...218 
7.7.4  Creating a profile in a handler...219 
7.7.5  Adding profile settings in a handler ..220 

7.8  Custom Properties...220 
7.8.1  Using Custom Properties...220 
7.8.2  Creating a Custom Property ..220 
7.8.3  The Content of a Custom Property..221 
7.8.4  Custom Property Names..221 
7.8.5  Referring to Custom Properties...221 
7.8.6  Nonexistent Custom Properties ...222 
7.8.7  Finding out Whether a Custom Property Exists..222 
7.8.8  Custom Properties & Converting Text Between Platforms ..222 
7.8.9  Storing a file in a custom property ..223 
7.8.10  Deleting a custom property ...224 

7.9  Custom Property Sets ...224 
7.9.1  Creating custom property sets ...225 
7.9.2  Custom property set names ...225 
7.9.3  Referring to custom property sets ...226 
7.9.4  Finding out whether a custom property set exists ...226 
7.9.5  The default custom property set ..227 
7.9.6  Using multiple custom property sets ...227 
7.9.7  Copying custom properties between property sets..228 
7.9.8  Arrays, custom properties, and custom property sets..228 
7.9.9  Deleting a custom property set..229 

7.10  Attaching Handlers to Custom Properties..230 
7.10.1  Responding to changing a custom property ..230 
7.10.2  The structure of a setProp handler ..231 
7.10.3  Responding to a request for the value of a custom property ...235 

7.11  Virtual Properties ...238 
7.11.1  When to use virtual properties ..238 
7.11.2  Handlers for a virtual property ..239 
7.11.3  Creating new object properties..240 

7.12  Managing Windows, Palettes and Dialogs..242 
7.12.1  Moving a window..242 
7.12.2  Changing a window's layer ...242 
7.12.3  The active window ..243 
7.12.4  Creating a backdrop ..244 
7.12.5  Open, Closed, and Hidden Windows ..245 
7.12.6  The states of a stack ..245 
7.12.7  Window Types and the Mode Property...246 
7.12.8  Window Appearance ...246 
7.12.9  The Decorations Property..247 
7.12.10  Making a stack resizable ...249 
7.12.11  Irregularly-Shaped and Translucent Windows..249 

7.13  Programming Menus & Menu Bars..250 
7.13.1  Menu Types...250 

10

7.13.2  Button Menus ..250 
7.13.3  Creating Cascading Menus..252 
7.13.4  Ticks, Dashes & Checks in Menus..252 
7.13.5  Menu Bars on Unix and Windows Systems..254 
7.13.6  Menu Bars on Mac OS Systems..254 
7.13.7  Stack Menus ..257 
7.13.8  Displaying Context Sensitive Menus ..258 

7.14  Searching and Navigating Cards using the Find Command...259 

7.15  Using Drag and Drop..259 
7.15.1  Initiating a Drag Drop ...260 
7.15.2  Tracking During a Drag Drop Operation ..260 
7.15.3  Responding to a Drag and Drop..261 
7.15.4  Prevent Dragging and Dropping to a Field ...262 

CHAPTER 8  WORKING WITH DATABASES 263 

8.1  Introduction to Database Access ...264 
8.1.1  SQL Databases ..264 
8.1.2  Why use an External Database? ..264 
8.1.3  The Basics of Database Structure..264 
8.1.4  SQL and Record Sets – Database Cursors ..265 
8.1.5  Choosing a Database ...266 

8.2  Differences Between Editions of Revolution...266 

8.3  Reasons to Choose a Database Type ...267 
8.3.1  Overview of ODBC...267 
8.3.2  Performance for Direct Access Versus ODBC Access ...268 

8.4  Software for Database Access ..268 
8.4.1  Finding Database Drivers..268 
8.4.2  MySQL..268 
8.4.3  Oracle ..268 
8.4.4  PostgreSQL ...269 
8.4.5  SQLite ...269 
8.4.6  Valentina Databases and the Valentina engine ...269 
8.4.7  ODBC managers and database drivers..270 

8.5  The Database Query Builder ...271 
8.5.1  How the Database Query Builder works...271 
8.5.2  Using the Database Query Builder..272 
8.5.3  Displaying Data from an Automatic Query ..276 
8.5.4  Linking Other Object Types to a Query..278 
8.5.5  Multiple Queries..280 
8.5.6  Extending the Database Query Builder ...281 

8.6  Using the Database Library ...281 
8.6.1  Working with the Database library ...281 
8.6.2  Database library commands and functions..282 

8.7  Integrating the Database library with the Database Query Builder..283 
8.7.1  Using Database Library commands and functions with a Database Query Builder query283 

11

8.7.2  Using commands and functions with a record set...284 
8.7.3  Changing the Current Record..284 
8.7.4  Retrieving the Current Record Number ..284 
8.7.5  Counting the Number of Records..284 
8.7.6  Refreshing the Query ..284 
8.7.7  Retrieving the SQL Statement used by the Query Builder ...285 
8.7.8  Setting the SQL Statement used by the Query Builder ...285 
8.7.9  Updating the Interface or Performing a Calculation when Changing Record ..285 

CHAPTER 9  PRINTING AND REPORTS 286 

9.1  Introduction to Printing ...287 

9.2  Controlling Printer Device Settings...287 
9.2.1  Choosing a Printer ...287 
9.2.2  Choosing Output Mode (e.g. Print to File)..287 
9.2.3  Working with Printer Dialogs ...288 
9.2.4  Saving Printer Settings ..289 

9.3  Paper Related Options..290 

9.4  Job Related Options..291 
9.4.1  Printer Font Metrics (Windows) ...292 

9.5  Printing a Card..293 
9.5.1  Card Layout Options ...294 

9.6  Printing Fields & Text ..297 

9.7  Printing a Layout ..298 
9.7.1  Printing a complex layout ...301 

9.8  Printing Multiple Pages ..304 
9.8.1  Multiple pages using card printing..304 
9.8.2  Multiple pages when using layout printing ...305 
9.8.3  Working with Scrolling Fields when Layout Printing ..305 
9.8.4  Working with Print Ranges ...306 

9.9  Printing a Browser Object ...307 

CHAPTER 10  DEPLOYING YOUR APPLICATION 308 

10.1  Building a Standalone Application..309 
10.1.1  Standalone Applications Settings..309 

10.2  Distributing Using the Player...322 

CHAPTER 11  ERROR HANDLING & DEBUGGING 323 

11.1  Common Techniques for Solving Problems ...324 
11.1.1  The Revolution Error Dialog...324 
11.1.2  Suppressing Errors and Messages ...325 
11.1.3  Outputting information as your script executes ..326 

12

11.1.4  Interrupting Execution...328 

11.2  The Debugger ..328 

11.3  The Variable Watcher ..330 

11.4  Custom Error handling ..331 

11.5  The Message Watcher...332 

11.6  Tracking Down Problems in Standalone Applications..334 

CHAPTER 12  TRANSFERRING INFORMATION WITH FILES, THE INTERNET AND
SOCKETS 335 

12.1  File Name Specifications and File Paths ...336 
12.1.1  What is a File Path?...336 
12.1.2  Absolute and Relative File Paths ..339 
12.1.3  When to use relative and absolute file paths ...341 

12.2  Special Folders...342 

12.3  File Types, Application Signatures & File Ownership ..342 
12.3.1  Windows File Extensions and Ownership ..342 
12.3.2  OS X File Types and Creators...343 
12.3.3  Mac OS Classic File Types and Creators..345 
12.3.4  Unix File Extensions ...347 

12.4  Working with URLs..347 
12.4.1  An Overview of URLs ..347 
12.4.2  URL Schemes..347 
12.4.3  The http scheme ..348 
12.4.4  The ftp scheme ..348 
12.4.5  The file scheme ...349 
12.4.6  The binfile scheme ..350 
12.4.7  The resfile scheme...350 
12.4.8  Manipulating URL contents ..351 
12.4.9  URLs and memory ..354 
12.4.10  Deleting URLs ...354 

12.5  Uploading and Downloading Files...355 
12.5.1  Non-blocking transfers ..356 
12.5.2  Using a stack on a server...359 

12.6  Other Internet Commands...361 
12.6.1  Working with Web Forms...361 
12.6.2  Working with FTP...361 
12.6.3  HTTP methods and http URLs..361 
12.6.4  Additional Transmission Settings ...363 
12.6.5  Troubleshooting ..363 

12.7  revBrowser – Rendering a Web Page within a Stack ..364 

12.8  SSL and Encryption..365 

13

12.8.1  Encrypting and Decrypting Data...365 
12.8.2  Connecting using HTTPS..365 
12.8.3  Implementing your own secure protocols ...365 

12.9  Writing your own protocol with sockets ...366 

CHAPTER 13  EXTENDING THE BUILT-IN CAPABILITIES 368 

13.1  Communicating with other process and applications..369 
13.1.1  Reading and writing to the command shell ...369 
13.1.2  Launching other applications ..369 
13.1.3  Closing another application...370 
13.1.4  Communicating with other processes ...370 
13.1.5  Using AppleScript and VBScript (Open Scripting Architecture or Windows Scripting Host)370 
13.1.6  AppleEvents ..371 
13.1.7  Using Local sockets ..371 

13.2  Extending the Revolution IDE ...372 
13.2.1  Creating Plug-ins...372 
13.2.2  Editing the IDE..375 

13.3  Externals – code written in lower level languages ...375 
13.3.1  The Externals SDK..376 

13.4  Building a Web Application ...376 

CHAPTER 14 WORKING WITH MEDIA 377 

14.1  Bitmap Images...378 
14.1.1  Importing Images ..378 
14.1.2  Importing Referenced Images ...379 
14.1.3  Import using Screen Capture...379 
14.1.4  Creating Images...379 
14.1.5  Using the Paint Tools ..380 
14.1.6  Scripting with the Paint Tools ...381 
14.1.7  Manipulating Binary Image Data ..382 
14.1.8  Rendering an Image from Objects ..382 
14.1.9  Exporting Images ..383 
14.1.10  Copying and Pasting Images ...383 
14.1.11  Working with Animated GIFs...384 

14.2  Working with Vector Graphics ...384 
14.2.1  The Vector Graphic Tools...384 
14.2.2  Creating Graphics by Script ..384 
14.2.3  Manipulating graphics by script ..384 

14.3  Working with Video..385 
14.3.1  The Player Object..386 
14.3.2  Preventing Use of QuickTime on Windows ...387 

14.4  Working with Sounds ...387 
14.4.1  Importing an Audio Clip ...388 
14.4.2  Playing an Audio Clip ...388 

14

14.5  Working with Visual Transition Effects ...388 

14.6  Creating Custom Skins ...389 
14.6.1  Custom Themed Buttons...389 
14.6.2  Irregular Windows...390 
14.6.3  Blend Modes (transfer modes or inks) ..390 
14.6.4  Full screen mode ...390 
14.6.5  Displaying a Backdrop ..390 

APPENDIX A: SHORTCUTS REFERENCE 392 

15

Chapter 1 Introduction
Before getting started with Revolution, there are a number of things you may want to know.
This chapter introduces Revolution, tells you where to begin, how to install, register and how to
use the documentation.

16

1.1 Welcome
Revolution makes it easy to turn your concepts, ideas or designs into powerful applications. You
can create desktop, Internet, database and network applications. Revolution includes a complete
graphical user interface builder, as well as the tools you need to produce faceless or background
applications.

Revolution is easy to learn. If you are a complete beginner to the world of programming, you
will find you can become productive quickly. If you are an experienced programmer, you will
find the environment extremely powerful and one of the most productive you have used.

Revolution’s programming language is object-based. This makes it easy to write modules of
code that are attached directly to individual objects. Unlike other languages, Revolution lets you
both run and edit an application live. Traditionally the run, edit, compile and debug cycle in
programming takes up a lot of time. In Revolution all of these activities can take place together.

If you’re coming from another language, you’ll appreciate that the Revolution language is
typeless, with data automatically stored in the most efficient format and converted, so you don’t
have to learn how to deal with different types of data. Memory management is fully automatic.
Revolution applications are not interpreted in the traditional sense, so they provide excellent
performance. A Revolution graphical application will often feel more responsive to use than a
Java application, and take less time to write.

A Revolution application is completely cross-platform. That means you can run any application
you create on all major modern operating systems, including Windows, Linux, Unix and Mac
OS. Unlike most other cross-platform frameworks, a Revolution application will always look
and feel native on each platform that you deliver it on. You can take advantage of many
platform specific features on each platform.

Revolution removes the need to learn how to access most individual programming interfaces for
each operating system. This saves you the time and effort of learning thousands of platform-
specific interface calls.

The goal of this manual is to provide the most accessible, comprehensive and useful guide to
Revolution possible. We aim to provide a level of depth that covers the advanced feature set,
while remaining accessible to beginners. We hope you find this material useful and enjoy using
Revolution.

The most recent version of this User’s Guide is available from:

http://downloads.runrev.com/userguide/userguide.pdf

17

1.2 Where to Begin
We recommend you start by taking a look at Developers section online at
www.runrev.com/developers. There is a wide variety of introductory material there, including a
set of Exploring Revolution workshops and Tutorials.

You may also want to take a look at the Getting Started section within the product
documentation. You can access this by choosing Documentation from the Help menu, then
clicking on Getting Started. Work through the Quick Start section, then take a look at the other
sections.

Tip: In addition to the workshops, tutorials and articles online, there are 50 working sample
scripts in the online documentation – go to Documentation -> Getting Started -> Sample
Scripts.

1.3 System Requirements

Note: Memory and disk requirements below are for the Revolution development environment,
not for applications created by Revolution. Applications created with Revolution will require
sufficient free system resources to load, display, process and interact with the content of the
application. Because this will vary considerably depending on the application created, it is not
possible to publish a list of requirements for applications built with Revolution. You will need to
test your application to determine the minimum requirements. Many Revolution applications
will run on a moderately powerful computer and require substantially fewer resources than those
listed for the development environment, others will require more.

1.3.1 All Operating Systems
• 1024x768 or larger monitor
• True color display (16-bit or 32-bit depth)
• Techsmith's Ensharpen codec is required to view the Videos in the Getting Started

section. (This is installed automatically by Revolution on Windows and Mac OS X.)

1.3.2 Requirements for Windows Systems
You can develop on any Windows system that includes:

• Operating system: Windows 98, ME, NT, 2000, XP or Vista
• Memory: 256MB free
• Disk space: at least 100MB free
• QuickTime 4.1 or later required for video features (QuickTime 6.0 or later

recommended)

18

1.3.3 Requirements for Linux Systems
The minimal requirements for Revolution to run are:

• Linux kernel 2.4 and above
• glibc 2.2.4 and above
• X11R5 and above

Although impossible to test every existing Linux distribution, we are aiming to ensure that
Revolution runs on as wide a variety of systems as possible. To achieve this, the engine has been
implemented to have minimal direct dependencies on system software, and will gracefully
degrade in feature set if it cannot find the libraries it needs. Generally any recent linux
distribution including Gnome/GTK support will have the required libraries for full feature
support – for example, Ubuntu 7 supports all these features (although alpha blended window
shape support requires you to be running with 'Advance Desktop Effects' turned on).

The following features have specific dependencies:

Feature Requires
Alpha-blended window shapes A 'composited' window

manager (e.g. 'Advance Desktop
Effects' turned on in Ubuntu 7)

Complex Unicode scripts Pango
Text rendering using anti-aliased TrueType fonts Xft
Native file open and save dialogs GTK
Native print and page setup dialogs GTK
Video playback mplayer
Audio playback esd

Figure 1– Linux software dependencies

1.3.4 Requirements for Mac OS X Systems
You can develop on any OS X system that includes:

• Any OS X-capable Macintosh
• Operating system: OS X 10.2.7 or later
• Memory: 256MB free
• Disk space: At least 100MB free

1.3.5 Requirements for Deployment on Mac OS Classic Systems
Development on Mac OS Classic is no longer supported. You can deploy on any Mac OS Classic
system that includes:

• Any PPC Macintosh
• Operating system: Mac OS 9.2.2
• Memory: At least 128MB total
• Disk space: At least 100MB free

19

• QuickTime 4.1 or later required for video features (QuickTime 6.0 recommended)

Important: To deploy on Classic your scripts must be compatible with the Revolution 2.6.1
engine as this is the last engine that will run on Classic.

1.4 Installation Instructions

Windows and Mac OS X
Revolution comes built as a self-running installer package on Windows and Mac OS X. Simply
double-click the Revolution Installer icon appropriate for your platform or run the installer from
the command line. The self-running installer is available in a form that downloads the
components from the Internet during installation, or as a single file that allows you to install even
when you do not have a network connection.

Linux
At present, the Linux version of the IDE is only available as a zip archive – there is currently no
installer. To get up and running with this you simply need to unzip into a suitable folder. For
example, from the command line do:

cd ~
mkdir Revolution
cd Revolution
unzip RevEnt300Full.zip

At this point you should have a folder ~/Revolution/3.0.0 containing the IDE. To run the IDE
simply do:

cd ~/Revolution/3.0.0
./revolution

1.5 Registration and Updates

Note: Installation from the single-file installer does not require an Internet connection.
However to be able to upload stacks to the revOnline community you will need to register for a
free account within the revOnline window.

If you have purchased a version of Revolution on CD, the Check for Updates feature will allow
you to quickly update the copy on your CD to the latest version as part of the installation
process.

20

1.6 Using the Documentation

1.6.1 Documentation Conventions

This documentation contains examples of Revolution language syntax. The
syntax for each language term is provided in boldface typewriter
text.

The syntax description uses the standard conventions to indicate parts of the syntax:
[] Square brackets enclose optional portions.
{} Curly braces enclose sets of alternatives from which to choose.
| Vertical bars separate different alternatives.
\ Line continuation character – this line continues to the next line.

Italics indicate placeholders that you don't enter literally.

Code examples are provided in typewriter text.

When you are told to choose an item from a menu, the menu name is written,
followed by an arrow, followed by the menu item. For example File -> New
means choose "New" from the "File" menu.

Many menu items have keyboard equivalents. These items can be accessed by
holding down a modifier key and pressing another key. The modifier keys
used throughout this document are generally the modifier keys used on
Windows, Linux and Unix. If you are using Mac OS, you may need to
substitute modifier keys using the table below. For example, if you are using a

Mac, where we say press control-x in this documentation, you may need to press command-x.

Windows, Linux and Unix keyboard
shortcuts

Mac OS equivalent

Control Command
Alt Option
Right-click Control-click (or right-click if you have a

two button mouse)
Figure 2– Cross-platform Keyboard Shortcuts

Screenshots are used extensively throughout the documentation. Please
remember that Revolution is a cross-platform application. While many of the
snapshots are taken on the Windows platform, most of the feature set will
work on Linux, Unix and Mac OS. Snapshots of these platforms are used from
time to time and are also used to illustrate platform specific features.

 Language
Terms

 Menu
Reference

 Keyboard
Shortcuts

 Screen
Snapshots

21

Tip: This style of text box tells you about an alternative way to do something or describes a
shortcut.

Important: This style of text box describes an aspect of Revolution that may confuse you if you
don't know about it and tells you how to avoid unexpected behavior.

Note: This style of text box provides some additional information that may be useful, or
emphasizes a key point.

Caution: This style of text box warns you about a potential problem that might cause an error or
loss of data.

1.6.2 Navigating the Documentation
The Revolution documentation is spread across four components; the Start Center, the Resource
Center, the Dictionary and this User's Guide.

The Start Center is aimed at introducing you to Revolution, and should be your first port of call
if you have not used Revolution before. The Resource Center will help you build upon any
experience you have and the dictionary is a reference resource which you can refer to while
implementing your projects.

You can access the documentation from within Revolution from the Help menu. Additional
resources are available online at www.runrev.com.

1.6.3 Start Center
The purpose of the Start Center is to introduce you to Revolution and provide you with enough
knowledge to start implementing your own projects. It can be accessed by choosing Help ->
Start Center. The Center itself is split across two sections; “Getting Started” and “User
Forums”.

Getting Started
The “Getting Started” section contains media and written tutorials. These outline the basic
functionality behind Revolution and provide instruction on how to create a simple calendar stack.
The section also contains a downloadable version of this guide and a link to the Revolution
Resource Center which is outlined in section 1.6.4.

22

User Forums
Revolution has a very active and friendly user community. We encourage all new users to sign
up to our mailing list and user forums as they are a great way to get technical help, meet new
people and keep up-to-date with what is going on in the world of Revolution. The “User
Forums” section provides a link to our forum registration page as well as a list of links to the
most recent posts which have been made.

23

1.6.4 Resource Center
The Revolution Resource Center is a teaching tool consisting of Tutorials, Sample Scripts and
Sample Projects. The Tutorials vary in their level of difficulty, guiding you from a novice to
expert Revolution programmer. The initial Tutorials revolve around the Revolution IDE and
introduce key Revolution concepts such as the use of messages. Later tutorials cover more
complex concepts, including how to use databases and extend Revolution's functionality using
externals.

The Sample Scripts and Projects contain working code examples, objects and stacks. The
Projects are complete stacks which you can download and edit. The Sample Scripts contain
smaller sections of code which can be copied and pasted from the Resource Center to your stack.

Each Tutorial, Project and Sample Script contains an explanation of what the example is, how it
works, and one or more of; a downloadable video, a downloadable stack, a downloadable PDF,
or a collection of objects to copy. These can be retrieved by clicking on the appropriate button at
the bottom of each screen.

To access the Resource Center click on it's icon in the menu bar or use Help ->
Resource Center.

24

25

1.6.5 Dictionary
The Dictionary contains the complete Revolution syntax. This can be searched using the quick
search box in the top right of the dictionary or filtered using the list of topics on the left.

26

When the selected filter is “All” the keyword index will contain all the entries in the dictionary.
The number of entries will decrease when a different filter is chosen as only the syntax for that
topic will be shown.

27

28

The documentation for a Dictionary entry can be viewed by clicking on the entry header in the
keyword index. This will show the entry in the area underneath the data view list. To expand the
entry to fill the window, double click the entry in the list. To get back to the previous view use
the back button.

29

The Dictionary itself has two viewing modes; single column view and multiple column view.
When in single column view, only the keyword for each dictionary entry will be shown in the
keyword index. In multiple column view you can choose which items to see for each entry. The
items can be chosen via the Preferences pane or by right-clicking on the column headings
themselves (when in multiple column view).

30

31

1.6.6 User's Guide
This Users Guide is a complete reference to Revolution. It details what the dialogs and windows
within the development environment do, and explains the Revolution language in depth.

1.7 Additional Resources
If you have a question that isn't answered in this documentation, you can find additional
information to help you on our web site. You can also connect with the Revolution developer
community, which includes many experienced developers who offer their expertise for the
common good to answer questions and help their fellow developers. You'll find example code,
information on planned enhancements, and the latest updates. Visit:

http://www.runrev.com

1.7.1 Developer Community
The forums (section 1.6.3 above), are available for getting help from other developers, for
discussing feature requests and future directions, and for receiving announcements from Runtime
Revolution. To join the forums, visit:

http://forums.runrev.com/

32

Mailing lists are also available. To join the mailing lists visit:
http://support.runrev.com/lists

Tip: Tip: You can use the Google search engine to search the list archives, using
http://www.google.com/advanced_search?q=site:lists.runrev.com

1.7.2 Technical Support
Runtime Revolution offers up and running technical support to all users to assist you in getting
the development environment working on your system.

Many editions include additional technical support for more advanced problems and questions.
Where support is not included, a separate technical support contract for advanced support can be
purchased. For full details of our current support policies, please see http://support.runrev.com/

You can contact us by email support@runrev.com

33

Chapter 2 Getting Started
Creating a simple graphical application in Revolution can take just minutes. First you create a
user interface, including any windows, palettes, dialogs you require. Then you populate the user
interface with controls, like push buttons, check boxes, text fields or menus. Finally, you use
Revolution, Revolution’s programming language to tell your application how to behave.

34

2.1.1 Prerequisites
Before you get started, you should be familiar with how to use your computer. You should also
be familiar with common applications such as a web browser, word processor and email client.
If you are using Linux or Unix, you should be familiar with basic use of the command line. If
you are not familiar with using a computer, we recommend you spend some time getting
acquainted before trying to learn Revolution.

2.1.2 Event Driven Programming
A Revolution application is driven by user actions. Revolution constantly watches the computer
for common actions, such as clicking on a button, typing into a field, sending data across a
network, or quitting an application.

Whenever an event occurs, Revolution sends a message. When writing your program, you
decide what messages you want your program to respond to. Revolution automatically sends
each message to the most relevant object. For example, if a user clicks on a button, Revolution
sends a message to the button. You place code within the button that tells it how to respond to
being clicked on.

There are a wide range of possible events. When a user clicks on a button, a series of events are
sent to the button. For example, when the mouse first moves within the border of the button a
mouseEnter message is sent. Then a series of mouseMove messages are sent as the mouse
moves over the button. When the mouse button is depressed a mouseDown message is sent.
When the mouse is released a mouseUp message is sent. You don’t have to respond to all of
these events. You simply place code within an object to handle the events you want your
application to respond to.

Events that are not handled by individual objects can be handled in a number of ways at different
levels of your application, in libraries, or they can be ignored. The rules that govern what
happen to events that are not processed by an object are described in the section The Message
Hierarchy.

We’ll return to Event Driven Programming in more detail in the section Writing Revolution
Code.

2.1.3 Object-Based Programming
Any graphical application you build using Revolution will be based on objects. With
Revolution you typically create the objects of your application before writing any code. You can
start by drawing the buttons, text fields, and other controls that make up your application.
Revolution operates like other layout, drawing or application development environment. You can
select controls by clicking them, move them by dragging them around, resize them, and change
their ‘layer’ to move them closer or further from the ‘top’ of the interface.

Once you have the objects in place, you can proceed to attach code to each object to respond to
the events you want. Revolution includes a complete graphical development environment that
makes it easy to create and edit any kind of user interface. It includes objects for all the basic

35

operating system elements, including buttons, checkboxes, text fields, menus, graphics, and
many more. In addition you can create and customize your own objects that look and behave
however you want.

If you are writing a non-graphical application, you can choose to create objects to assist in
organizing your code into sections and load these objects off screen, or you can simply write
your code in a text file and run the text file directly. This method is commonly used to
communicate with Apache and other web browsers when using Revolution to build server-side
or network applications.

Object-Based programming is covered in more detail in the section Building a User Interface.
Non-graphical applications are covered in more detail in the section Building a Web Application.

2.1.4 The ʻEditʼ and ʻRunʼ Mode

Important: In order to enter run mode, choose the browse tool in the top left of the tools palette.
In order to edit, choose the pointer tool from the top right of the tools palette.

Unlike most other development systems, a Revolution application can be created, edited,
debugged and run live.

When in run mode, objects receive all the normal messages that drive a Revolution application.
For example, clicking on a button in run mode will cause a mouseUp message to be sent to it,
causing the button's script to run if you've designed it to respond to the mouseUp message.

When in edit mode, objects do not receive messages when you click on them, and you can move,
resize or edit the properties for objects.

Tip: To temporarily stop all messages being sent to your application while editing it, choose
Suppress Messages from the Development menu or Toolbar.

There few other differences between the two tool modes. You can view and edit properties and
code in either mode. Your application does not stop running while you make changes to it. Only
mouse interaction with objects is suspended in edit mode to allow you to edit them more easily.

Because Revolution is constantly live, you can easily make simple changes and watch each
change take effect as you make it. This allows you to design and experiment using an iterative
process, resulting in a more productive and satisfying development experience.

36

2.2 Structuring your Application

2.2.1 Cards, Stacks & Files
The first step in creating a Revolution application is creating a window, which in Revolution is
called a stack. Each window you see in Revolution is a stack. Palettes, dialog boxes, and
standard windows are all stacks.

Each stack contains one or more sets of information called cards. Each card can have a different
appearance or all the cards in a stack can look the same. By going from card to card in a stack,
you change what's being displayed in that stack's window. You can think of a Revolution stack
as a stack of playing cards (hence the name), where you can flip through the cards, but only one
card at a time is visible. A stack can have a single card or many cards. See Figure 3 – Stack file
Structure, below.

All user interface objects (controls) are created by dragging them on to a card area.

You can also group controls together if you want them to operate as a set. For example, if you
have a set of navigation buttons that go from card to card in your stack, you can make them into
a single group. Groups can appear on more than one card, so your navigation buttons or
background image can appear on each card of your stack. For more details, see the section on
Group and Backgrounds.

A collection of stacks can be saved together in a single file. This file is known as a stack file.
The first stack in the file is called the main stack and will be loaded automatically when your
application is run.

2.2.2 The Structure of a Stack File
Each Revolution file contains one or more stacks: either a single main stack, or a main stack and
one or more substacks. Since each stack is a window (including editable windows, modeless and
modal dialog boxes, and palettes), a single stack file can contain multiple windows.

You can use this capability to bundle several related stacks into a single file for easy distribution,
to organize your stacks into categories, or to allow several stacks to inherit properties from the
same main stack.

37

Figure 3 – Stack File Structure

2.2.3 Opening a Stack File
When you open a stack file, either by using the "Open Stack" menu item in the File menu or by
using one of the navigation commands (see open, go, modal, modeless, palette, or
topLevel in the Revolution Dictionary), the stack file's main stack opens automatically to its
first card.

Important: A stack file is saved as a whole. If you save a stack, all the other stacks in the same
stack file are saved at the same time.

Substacks in the stack file do not open automatically when the stack file opens. You must open a
substack in a handler or the Message Box, or by using the Application Browser.

2.2.4 Main Stacks and Substacks
The first stack created in a stack file is called the mainstack. Any other stacks created in the same
stack file are called substacks of the mainstack.

The mainstack is part of the object hierarchy of all other stacks in the same stack file. In other
words (for the purposes of inherited properties and shared behaviors), the mainstack contains its
substacks. Events that are not handled by a substack are passed on to the mainstack's script, color

38

and font properties are inherited from the mainstack by its substacks. For more details on the
object hierarchy and inheritance in Revolution in general, see the section on The Message Path.

Dialog boxes and palettes are commonly stored as substacks of the main application window,
which is typically a mainstack. This allows you to store code and common functions used by all
the substacks in the mainstack's script. Because mainstacks are part of the object hierarchy of
their substacks, the substacks can call this functionality from scripts within the substack.

2.2.5 Stacks, Stack Files, and Memory
A stack file can be loaded into memory without actually being open. A stack whose window is
closed (not just hidden) is not listed in the openStacks function. However, it takes up
memory, and its objects are accessible to other stacks. (For example, if a closed stack loaded into
memory contains a certain image, you can use the image as a button icon in another stack.)

If one stack in a stack file is loaded into memory, so are any other stacks in the same stack file.
You cannot load one stack in a stack file without loading all the rest at the same time even if you
open only one of the stacks.

A stack can be loaded into memory without being open under the following conditions:

A piece of code in another stack read or set a property within the closed stack. This automatically
loads the referenced stack into memory.

The stack is in the same stack file as another stack that is open.

The stack was opened and then closed, and its destroyStack property is set to false. If the
destroyStack property is false, the stack is closed but not unloaded when its window is
closed.

Tip: To manipulate a stack window in an external, use the windowID property. For more
information, see the Revolution Dictionary.

2.2.6 Media & Resources
When planning a project, it is important to consider what types of media you will need to access
and how to structure access to that media.

Revolution supports a wide range of media formats. Media can be accessed using the built-in
media support, through QuickTime or via an external library. The advantage of using the built-
in support is that you can consistently display or play back the media on all platforms without
having to check that any 3rd party component has been installed. The advantage of using
QuickTime is that a wider range of media is supported. Other 3rd party libraries may allow a
greater range of media access.

39

Since each loaded stack file takes up as much memory as the size of all its stacks, it is often
advisable to place large, seldom-used objects (such as color pictures, sound, and video) in
external files, which can be bundled with your application and loaded into memory only when
you need them.

The built-in media support allows you to embed media directly within your stack file, or to
reference it externally, storing it in a data folder, online or on a CD. QuickTime media must be
located externally and can either be local or streamed from a server.

Embedding Media within your project Referencing Media externally
Allows distribution of a single-file
application for easy, reliable distribution

Requires you to distribute the media files
separately

Requires importing media whenever it is
updated

Allows you to edit media files directly,
they update automatically

Requires enough memory to load all the
media

Makes it easy to load and unload media if
you need to reduce memory requirements

Allows you to use the built-in editing
capabilities directly

Requires you to import and export the
media to use the built-in editing
capabilities

Is less practical for creating large themed
or localized applications where one set of
media is replaced with another set

Makes it easy to create themed or localized
applications by simply linking to a
different directory

Tip: When importing images, use the Image Library, or create a ‘library’ card that contains all
the originals, then reference those objects throughout your project. For more details on
referencing images, see the section on the button object.

For details of the image formats supported natively, see the section on the Image object. For
details of the audio formats supported natively, see the section on the audioClip object. For
details on how to control a QuickTime movie, see the section on the Player object.

2.2.7 How to Use External Files
There are three main ways to use external files:

Keep media such as images, sounds, and video in external files, in the appropriate format, and
use referenced controls to display the contents of the files. When you use a referenced control,
the image, sound, or video file is loaded into memory only when a card that contains the
referenced control is being displayed. The memory needed for the image, sound, or video is
therefore only used when actually needed. By using relative file paths, you can move the
application and its data files to any other system. For more details on using file paths, see the
section on File Name Specifications and File Paths.

40

Note: To create a referenced control, use the "New Referenced Control" submenu in the File
menu, or create an empty image or player object, then set the object's fileName property to a file
path for the file you want to reference. For more details, see the section on Building a User
Interface.

Keep portions of your application in a separate stack file, and refer to the stacks in that stack file
as necessary. The stackFiles property simplifies referring to external stack files. When you
set a stack's stackFiles property to include one or more file paths, the stacks at those
locations become available to your stack by simply referring to the stacks by name.
Keep portions of your application on a server, and download them using the built in URL
commands. For more details on the URL commands, see the section on Working with Files,
URLs & Sockets.

2.2.8 When to use a Database
You don't need to use an external database to store information for your application. You can
store information in stacks, in text files, and in a variety of other files, read it into your
application as needed, and modify it. However, as a rule of thumb, we recommend that when
you have over two thousand records of information, or you want to allow multiple users to
access information at the same time, you consider using a database.

In these circumstances an external database offers many advantages. A database located on your
local machine will be fast and efficient at accessing and searching records. A database located
on a server can be accessed by more than one user. Depending on the particular implementation,
a database may be suitable for constant access by hundreds of users, each receiving and updating
data continually. SQL databases have built-in record-locking capabilities, preventing one user's
changes from wiping out another's— a necessity for reliable multi-user databases. Other built-in
features work behind the scenes to ensure the data in the database is not corrupted by
interference between different users.

SQL databases are also built for speed. When searching tens or hundreds of megabytes or more,
the performance of an optimized database will generally be much better than that of a stack
doing the same search. Moreover, stacks must be loaded into memory to be searched, and
therefore the whole collection of data must fit into local memory.

Finally, if you use an external database, you can put the heavy-duty processing on a server
designed for the purpose, while using Revolution's flexibility to give the user options for
selecting data, then presenting it in a usable form.

With Revolution’s built in Database Library, your application can communicate with external
SQL databases. You can get data from single-user and multi-user databases, update data in them,
get information about the database structure, and display data from the database in your stack.
With the Database Query Builder, you can automate the process of querying a database and
populating fields with the data, with no coding required.

41

For more details on working with databases, see Chapter 8, Working with Databases.

2.2.9 Revolution Memory Limits
The following table details the memory limits for different types of Revolution components.
Please note that these limits refer to the maximums that may be in use at any one time. You can
store additional information on disk or in a database and load it when it is required.

A note about entries designated as "Unlimited":
Since each open stack file resides completely in memory, Revolution stacks (and all structures
within a stack) are effectively limited by available memory and by Revolution's total address
space of 4G (4,294,967,296 bytes) on 32-bit systems, or 16P (18,446,744,073,709,551,616
bytes) on 64-bit systems.

Total addressable space 4 GB (on 32-bit systems)

16 P (on 64-bit systems)
Maximum length of a line in a field 65,536 characters storage

No more than 32,786 pixels wide for
display

Maximum size of an object Unlimited
Maximum number of objects in a group Unlimited
Maximum number of objects on a card Unlimited
Maximum number of cards in a stack Unlimited
Maximum number of objects in a stack Unlimited

Maximum length of object names 65,536 characters
Maximum length of custom property names 255 characters
Maximum length of command or function names 65,536 characters
Maximum size of customer properties Unlimited
Maximum number of customer properties Unlimited
Maximum size of a script Unlimited
Maximum size of other properties 64K
Maximum size of an external call 64K
Maximum size of data returned by an external 64K

Maximum nesting level in control structures Unlimited
Maximum level of recursion Unlimited

42

Chapter 3 The Development Environment
This section details the main components within Revolutions Integrated Development
Environment (IDE). The development environment contains all the features you need to quickly
create a professional application. The Application Browser allows you to find your way around
your application as you develop it. The Properties Inspector allows you to set appearance and
basic behaviors. The Script Editor allows you to add code to each object in your application. In
addition to these standard tools, the Message Box provides a mini command-line that allows you
to develop aspects of your application automatically or to test out your application’s code and
functionality.

43

3.1 The Menu Bar

3.1.1 The File Menu
The File menu contains commands to open, close and save files; print; and incorporate files into
your stack.

New Mainstack Creates a new "Untitled 1" main stack window. When you save

the stack, Revolution asks for a file name and location.
New Substack of
(main stack name)

Creates a new untitled stack in the same file as the active main
stack. When you save the substack, it is saved in the main
stack’s file. This item is disabled if the active window is not a
main stack.

Open Stack... Opens the main stack whose file you select. If you select a
HyperCard file, it is automatically converted into a Revolution
main stack. NB: Opening HyperCard stacks is only available in
the Studio or Enterprise editions of Revolution.

Open Recent Stack Opens a cascading menu containing the names of the 30 main
stacks you have most recently closed. Choose a name to open
the stack. You can change the number of items displayed using
Preferences.

Close Closes the active window. This item is disabled if no window is
open.

Close and Remove
from Memory...

Closes the current stack and all stacks in the same stack file as
the current stack, and removes all stacks in the file from
memory. This item is disabled if the active window is not a user
stack.

Import as Control Opens a cascading menu you can use to choose a file and place
its contents in a new control of the appropriate type. This item
is disabled if the active window is not a stack.

Image File... Imports the picture file you choose as a new image on the
current card. You can import GIF, JPEG, PNG, BMP, XWD,
XBM, XPM, or PBM, PGM, or PBM files (and PICT files on
Mac OS and OS X systems). For more details see the section
on the image object.

Snapshot Displays a crosshairs cursor for you to select an area of the
screen, and imports a screen shot of that area as a new image on
the current card.

Audio File... Imports the sound file you choose as a new audio clip in the
current stack. You can import WAV, AIFF, or AU files. For
more details, see the section on the audioClip object.

Video File... Imports the video file you choose as a new video clip in the
current stack. You can import QuickTime, AVI, or MPEG files.
For more details, see the section on the videoClip object.

Text File... Imports the text file you choose as a new field on the current

44

card.
EPS File... Imports the Encapsulated PostScript file you choose as a new

EPS object on the current card. This item is only available on
Unix platforms with Display Postscript installed. For more
information, see the section on the EPS object.

All Images in
Folder...

Imports all the picture files in the folder you choose, and places
them in new images on the current card. Subfolders, and other
types of files, are ignored. For more details see the section on
the image object.

All Audio Files in
Folder...

Imports all the sound files in the folder you choose, and places
them in new audioClips in the current stack. Subfolders, and
other types of files, are ignored. For more details, see the
section on the audioClip object.

New Referenced
Control

Opens a cascading menu you can use to select a file to reference
(i.e. link) to a new control of the appropriate type. This item is
disabled if the active window is not a stack.

Image File... Creates a new image on the current card and links to the picture
file you select in the new image object. For more details see the
section on the image object.

Quicktime-Supported
File...

Creates a new player on the current card and links the audio or
video file you select with the new player. For more details, see
the section on the player object.

All Images in
Folder...

For each picture file in the folder you select, creates a new
image on the current card and links it with one of the files.
Subfolders, and other types of files, are ignored. For more
details see the section on the image object.

Save Saves changes to the current stack and to any other stacks that
reside in the same stack file. If the file has not yet been saved,
you specify the new file’s name and location. This item is
disabled if the active window is not a stack.

Save As... Saves the current stack, along with any other stacks that reside
in the same file, to a new file with a name and location you
specify. The new file becomes the current working copy.

Move Substack to
File...

Saves the front most substack as a main stack in a file of its
own, with a name and location you specify. The substack is
removed from its previous stack file. This item is disabled if the
active window is not a substack.

Revert to Saved... Throws away any changes to the current stack, along with any
other stacks that reside in the same stack file. The entire stack
file is then reloaded.

Standalone
Application
Settings...

Settings for packaging the current stack for distribution as a
standalone application. This item is disabled if the active
window is not a stack. For more details, see the section
onDeploying your Application.

Save As Standalone
Application...

Packages the current stack into a standalone application for
distribution using the settings set using the Standalone

45

Application Settings window.
Page Setup... Opens the Page Setup dialog box for the currently selected

printer.
Print Card... Prints the current card.
Print Field... Prints the currently selected field using the revPrintField

command. For more details, see the section on Printing.
Exit Closes all open stacks and quits Revolution.

3.1.2 The Edit Menu
The Edit menu contains commands to select, cut, copy, and paste text and objects.

Undo Reverses the most recent text change, paint action, movement

or deletion of an object.
Cut, Copy, Paste Cuts, copies or pastes the selected text or object. Text and

images can be exchanged with other programs in this manner.
Objects are only available within the currently running instance
of Revolution.

Clear Deletes the selected text or objects, without placing it on the
clipboard.

Duplicate Makes a copy of the selected object or objects. If the object is a
card, the copy is added after the current card. If the object is a
control, the copy is placed on the current card, below and to the
right of the original object. This item is disabled if no object is
selected.

Replicate... Makes one or more copies of the selected object or objects,
using the settings you select.

The Replicate dialog allows you to

select how many copies of the
currently selected object you would

like. You can specify that each object
is offset a number of pixels from the
previous copy. You can also specify

that each object is scaled up or down a
number of pixels. If the object is an

image or a graphic, each copy can be
rotated by a specified number of

degrees.

Figure 4 – Replicate

46

Select All Selects all the text in the current field or all the controls on the

current card.
Deselect All Deselects any selected objects, or removes the insertion point

from a field.
Invert Selection Selects all the unselected objects and unselects all the selected

ones. This item does not work on text selections.
Select Grouped
Controls

If this item is checked, clicking a control that's part of a group
selects only that control. If unchecked, clicking a control that's
part of a group selects the group.

Intersected Selections If this item is checked, dragging with the Pointer tool selects
each object that intersects the dragged rectangle. If unchecked,
dragging with the Pointer tool selects only objects that are
entirely enclosed by the dragged rectangle.

Find and Replace... Searches for and optionally replaces text in fields, properties,
scripts, global variables, or button contents. For more details,
see the section on Find and Replace.

Preferences Sets application-wide preferences. (Note that this item is
available under the Revolution menu when running on Mac OS
X.)

3.1.3 The Tools Menu
The Tools menu contains commands to work with Revolution's tool palettes and to use stack
development tools.
Browse Tool Chooses the Browse tool for running a project. Allows you to

perform user actions such as running scripts by clicking
buttons, or entering text in a field.

Pointer Tool Chooses the Pointer tool for editing a project. Allows you to
select, move, and resize objects.

Tools Palette Shows or hides the Tools palette for choosing tools for object
creation.

Application Browser Opens the Application Browser window, which lists all open
stacks, the cards in each stack, and the controls on each card.
For more details, see the section on the Application Browser.

Menu Builder Creates or changes the menu bar in the currently active stack.
For more details, see the section on the Working with Menus.

Database Query
Builder

Creates or edits settings for using an SQL database. Using the
Database Query Builder, you can connect to a database and
specify a SQL query to generate a cursor result set. Connection
settings and cursor result sets can be linked to fields for display
of the data, using the Database pane in the field's property
Inspector. For more details, see the section on Working with
Databases.

Message Box Shows or hides the Message Box. The Message Box is a
command line tool that allows you to run scripts or perform

47

automated editing operations. For more details, see the section
on The Message Box.

3.1.4 The Object Menu
The Object menu contains commands to change the properties of the selected object or objects,
to create new objects, and to work with groups.

Object Inspector Opens the Inspector for the currently selected object, allowing

you to view and set object properties. If more than one object is
selected, changes made to the properties are applied to each of
the selected objects. This item is disabled if no object is
selected. For more details, see the section on The Properties
Inspector.

Card Inspector Opens the Inspector for the current card, allowing you to view
and set card properties.

Stack Inspector Opens the Inspector for the current stack, allowing you to view
and set stack properties.

Object Script Opens the script editor for the selected objects. If more than
one object is selected, a script editor window opens for each
one. For more details, see the section on The Script Editor.

Card Script Opens the script editor for the current card.
Stack Script Opens the script editor for the current stack.
Group Selected Makes the selected objects into a group. This item changes to

"Ungroup Selected" if the only selected object is a group. For
more details, see the section on Groups and Backgrounds.

Ungroup Selected Makes the selected group into individual objects. This removes
the group permanently if you visit another card before
grouping the objects again. This item changes to "Group
Selected" if more than one object is selected.

Edit Group Enters group-editing mode to make changes to the objects in
the selected group. This item changes to "Stop Editing Group"
while in group-editing mode. This item is disabled if no object
is selected, if more than one object is selected, or if the selected
object is not a group.

Stop Editing Group Leaves group-editing mode. This item changes to "Edit Group"
if the stack is not already in group-editing mode.

Remove Group Removes the selected group from the current card, without
deleting it from the stack.

Place Group Opens a cascading menu containing the names of groups that
are in the stack but not on the current card. Choose a group to
add it to the current card. This item is disabled if all the groups
in the stack already appear on the current card, or if there are
no groups. Note: Only the names of top-level groups are listed;
groups that are a part of another group are not listed in this
menu.

48

New Card Creates a new card following the current card. Note: If there
are any shared groups on the current card when you choose this
menu item, they are automatically placed on the new card. If a
group's backgroundBehavior is false, they are not placed
automatically on new cards.

Delete Card Deletes the current card from the front most stack.
New Control Opens a cascading menu you can use to create a new control.

For more details, see the section on Control Types.
Flip Opens a cascading menu you can use to change the orientation

of the selected image or graphic. This item is disabled if any
object other than an image or graphic is selected.

 Horizontal Swaps the left and right edges of the selected image or graphic,
flipping it around an imaginary line drawn from top to bottom
of the object.

Vertical Swaps the top and bottom edges of the selected image or
graphic, flipping it around an imaginary line drawn from left to
right of the object.

Rotate Opens a cascading menu you can use to rotate the selected
image or graphic.

By... Rotates the selected image or graphic by the number of degrees
you specify.

90° Right Rotates the selected image or graphic 90 degrees to the right
(clockwise).

90° Left Rotates the selected image or graphic 90 degrees to the left
(counterclockwise).

180° Rotates the selected image or graphic 180 degrees (halfway
around).

Reshape Graphic Allows you to interactively reshape currently selected polygon
or curve graphics.

Align Selected
Controls

Opens a cascading menu you can use to line up objects. This
item is disabled if no object or only one object is selected.

 Left Moves the selected controls so their left edges are lined up with
the left edge of the first control selected.

Right Moves the selected controls so their right edges are lined up
with the right edge of the first control selected.

Top Moves the selected controls so their top edges are lined up with
the top edge of the first control selected.

Bottom Moves the selected controls so their bottom edges are lined up
with the bottom edge of the first control selected.

Make Widths Equal Resizes the selected controls so that the width of each one is
equal to the width of the first control selected.

Make Heights Equal Resizes the selected controls so that the height of each one is
equal to the height of the first control selected.

Send to Back Moves the selected objects behind all other objects on the card.
This item is disabled if no object is selected.

Move Backward Moves the selected objects back one layer.

49

Move Forward Moves the selected objects forward one layer.
Bring to Front Moves the selected objects in front of all other objects on the

card.

3.1.5 The Text Menu
The Text menu contains commands to change the appearance of text.

Text Style Options Applies or removes the selected style from the selected text or

the selected object. These items are disabled if nothing is
selected.

Link Makes the selected text, or all text in the selected object into a
link. Linked text has special properties in Revolution, for
example linked text will receive a linkClicked message when
clicked on. For more details, see the section on the Field
object.

Subscript Moves the selected text below the baseline and makes it
smaller.

Superscript Moves the selected text above the baseline and makes it
smaller.

Font Opens a cascading menu you can use to change the font face
used for the selected text or objects.

Use Owner's Font Causes the font face of the object's owner (if an object is
selected) or the object the text is in (if text is selected) to be
used, removing any font face specific to the selected text or
objects. For more information on font inheritance, see the
section on the Message Hierarchy.

Size Opens a cascading menu you can use to change the font size
used for the selected text or objects.

Use Owner's Size Causes the font size of the object's owner (if an object is
selected) or the object the text is in (if text is selected) to be
used, removing any font size specific to the selected text or
objects. For more information on font inheritance, see the
section on the Message Hierarchy.

Color Opens a cascading menu you can use to change the font color
used for the selected text or objects. (This item is disabled if
nothing is selected.)

Use Owner's Color Causes the font color of the object's owner (if an object is
selected) or the object the text is in (if text is selected) to be
used, removing any font color specific to the selected text or
objects. For more information on font inheritance, see the
section on the Message Hierarchy.

Pen Color Changes the selected text, or text used in any selected objects,
to use the current ‘pen color’ setting (used to draw graphics
from the main tool palette).

Align Opens a cascading menu you can use to change the text

50

alignment (justification) used for the text in the selected
objects.

3.1.6 The Development Menu
The Development menu contains commands for debugging and for using custom tool stacks.

Revolution Online Opens the Revolution Online window, allowing you to share

your stacks with the Revolution community and download
other people’s stacks.

Object Library Displays the Object Library window, which stores pre-scripted
objects you can copy into the current stack for use.

Image Library Displays the Image Library window, which displays images
you can either reference or copy into the current stack for use.
You can use the Image Library to show all the icons and
cursors that come with Revolution, all the images in the current
stack, or image libraries that you create. For more details, see
the section on the Object & Image Library.

Plugins Opens a cascading menu you can use to open custom tool
stacks stored in the Plugins folder.

Plugin Settings Customizes which messages are handled by the custom tool
stacks stored in the Plugins folder.

Script Debug Mode If this item is checked, the debugger is enabled: the debugger
window appears when a breakpoint is encountered during
script execution, and you can enter the debugger when an
execution error occurs. If unchecked, the debugger is disabled.
For more details, see the section on Debugging.

Clear All Breakpoints Removes all breakpoints that you've used the script editor to
mark, in all open stacks. Note: This menu item does not affect
breakpoints set with the breakpoint command.

Message Watcher Opens the Message Watcher window, used to view and track
messages, function calls, getProp calls, and setProp triggers as
they are sent to objects.

Variable Watcher Opens the Variable Watcher window, which you use to keep
track of the value of variables during debugging. When the
debugger is not open, the variable watcher shows the value of
global variables.

Caution: Warning: this feature will cause your scripts to fail silently instead of giving an error
message in the event Revolution encounters an error.

Suppress Errors Prevents display of the error window when Revolution
encounters a script error.

Suppress Messages Prevents system messages (such as openCard and closeCard)

51

from being sent during normal navigation. This option will
also cancel any currently pending messages.

Tip: To also suspend Revolution libraries, hold down the Shift key while choosing this menu
item.

Suspend Development
Tools

Hides Revolution's menus, palettes, and other parts of the
development environment, so that you can preview how your
application will look and behave as a standalone, outside the
development environment.

3.1.7 The View Menu
The View menu contains commands to move around the current stack and to show or hide
development tools.

Go First Goes to the first card in the current stack.
Go Prev Goes back to the previous card in the current stack.
Go Next Goes forward to the next card in the current stack.
Go Last Goes to the last card of the current stack.
Go Recent Goes back to the card you were on before navigating to the

current card.
Toolbar Text Shows or hides the text labels in the Toolbar at the top of the

screen. To hide the Toolbar completely, uncheck both this item
and "Toolbar Icons".

Toolbar Icons Shows or hides the icons in the Toolbar at the top of the screen.
Palettes Shows or hides all open Revolution palettes.
Rulers Shows or hides a ruler at the left and bottom edges of each

open stack.
Grid If this item is checked, dragging and resizing objects is

constrained by a pixel grid. If unchecked, you can drag and
resize objects to any location. You can alter the grid spacing in
Preferences.

Backdrop Shows or hides a solid or patterned backdrop behind
Revolution's windows.

Revolution UI
Elements in Lists

If this item is checked, elements of the Revolution
development environment appear in lists: for example,
development environment stacks appear in the Application
Browser, and Revolution custom properties appear in the
Custom Properties pane of the property inspector. If
unchecked, elements of the Revolution development
environment do not appear in such lists.

Look and Feel Opens a cascading menu you can use to change the appearance
of controls in order to preview your application's appearance
on other platforms.

52

Show Invisible
Objects

If this item is checked, objects whose visible property is set to
false are shown. If unchecked, objects whose visible property
is set to false remain hidden.

3.1.8 Window
The Window menu contains the names of open stack windows.

Send Window To
Back

Shuffles the frontmost stack window to the back and brings the
second window to the front. (This item is disabled if only one
stack is open or the active window is not a stack.)

3.1.9 The Help Menu
The Help menu contains commands which allow you to find out more about using Revolution,
license your copy of Revolution, get technical support via email, and check the Revolution site
for software updates. For more information, see the section on Using the Documentation.

Documentation Opens the main Revolution documentation window, where you

can get information about all aspects of developing in
Revolution.

Buy a license… Loads the Revolution store in your web browser.
Support… Loads the support section of the Revolution web site in your

web browser.
Check for Updates… Checks online to see if an update to Revolution is available.
Manage Versions… Allows you to select a different version of Revolution to be

your default version. The default version is the version linked
to from the shortcut placed within the first level of your
Revolution install folder, and/or on the Desktop and/or in the
Start Menu.

Re-license Revolution Deletes your Revolution licensing information and restarts
Revolution allowing you to enter a new license key.

3.2 The Application Browser
The Application Browser contains a list of all open stacks, the cards in each stack, and the
controls on each card. It allows you to navigate to any card, open or close a stack, select, open
the property Inspector for, or edit the script of any object.

You can access the Application Browser by choosing Tools -> Application Browser.

53

Figure 5 – Application Browser: main window

Left header bar Displays the name of the stacks and their associated cards, together

with the object number and the number of lines of script for that
card or stack.
Clicking in this area will sort the cards by the column header
clicked on.
Right-clicking allows you to customize the columns on display,
optionally adding columns to display the object ID or card’s
marked property, or allowing you to reset the columns to default.
Clicking and dragging between the column headers allows you to
resize the columns.

Stack components
list

Displays all the stacks (mainStacks and subStacks) within open
stack files.
Click the fold out symbol to the left of the stack to view a list of
cards, audioClips and videoClips associated with the stack.
Double-clicking will go to the stack or card selected, or play the
audio or video clip.
Right-click to open object context sensitive menu.
Alt-double-click to open the object’s Inspector
Control-double-click to edit the script.

Resize bar Drag to alter width of the left and right sides.
Right header bar Displays the object type, visibility, selectability, layer, name, and

number of lines of script.
Clicking in this area will sort the objects by the column header
clicked on.
Right-clicking allows you to customize the columns on display,

54

optionally adding columns to display the object ID, or allowing you
to reset the columns to default.
Clicking and dragging between the column headers allows you to
resize the columns.

Card controls list Displays a list of controls on the card selected on the left, or list of
audio or video clips.
Click an object to select it.
Right-click to open the object’s context sensitive menu. Double-
click to open a control’s Inspector or to play an audioClip or
videoClip.
Alt-double-click to open the Inspector for an audioClip or
videoClip.
Control click to select multiple objects.
Control-double-click to edit script.
To Refresh the list of controls currently displayed on the right hand
column, right-click on an object then choose Refresh.

Tip: To select an object by typing its name, click in either the left hand or right hand column and
then start typing.

Figure 6 – Application Browser: stack context-sensitive menu

Go: Go to this stack.
Toplevel: Bring this stack to front in editable mode.
Property Inspector: Open the Inspector for this stack.
Edit Script: Edit script of this stack.
New Substack: Create a subStack within the same file as this stack.
Delete subStack: Delete this subStack.
Close and Remove From Memory: Close and remove the mainStack and all subStacks in this
file from memory.

55

Save: Save all stacks in this stack file.
Standalone Application Settings: Open the Standalone Settings options.
Save as Standalone Application: Save this stack file as a standalone application.

Figure 7– Application Browser: card context-sensitive menu

Go: Navigate to this card
Toplevel: Bring stack to front in editable mode, then navigate to this card
Select: Select this card
Property Inspector: Open the Inspector window for this card
Edit script: Edit script of this card
New Card: Create a new card
Delete Card: Delete this card

Figure 8 – Application Browser: control context-sensitive menu

Property Inspector: Open the Inspector window for this control
Edit script: Edit script of this card

56

Refresh: Update the list of controls

3.3 The Properties Inspector
The Properties Inspector allows you to view and edit the properties for any selected
object. Properties control how an object looks and some aspects of an object’s behavior.
The Inspector can be accessed by double clicking on a selected object, from the toolbar,
from the Object menu and from context sensitive menus.

Figure 9 - Properties Inspector

Lock icon The Lock icon locks the Inspector to the object currently being

inspected. Once locked, the Inspector will not update when you
change selection or switch to Run mode by choosing the Browse
tool. This allows you to used a locked Inspector to change an
object’s properties while interacting with your project. Selecting
another object and choosing Inspect will create another Inspector to
inspect the new object. You can use this facility to compare the
properties of two objects.

Pane Selector This menu allows you to access each of the different panes within
the inspector for a given object.

Action menu Use the Action menu to Select another Object, Change the Profile,

57

Edit the Script or Send a Message to the object currently being
inspected, or to Lock the Inspector.

Property text Edit the contents of a property by typing into the text area within
the Inspector. Press return to set the property and leave the current
option selected. Press tab to set the property and move on to the
next editable text property.

Property
description

This text describes the object property. By default this text is an
English-like description of the property. However you can change
this to contain the Name of the Revolution Property in the
Preferences. You may prefer to view the Revolution Property
names if you are writing scripts that set object properties.

Important: For documentation on what each individual object property does, hover the
mouse over the object until you see the script property equivalent. Then look that term
up in the Revolution Dictionary.

3.4 The Script Editor
The Script Editor within Revolution has been designed specifically for Revolution
coding. It includes features to help make code more understandable. These include code
indentation and color coded syntax highlighting, as well as other integrated tools such as
a Debugger and syntax Dictionary. You can access the Script Editor for an object by
selecting the object then choosing Script from the Tool bar. The Script Editor is also
available from the Object menu, and from a number of other context sensitive menus
detailed elsewhere in this guide. Each of the Script Editor's components are outlined
below.

58

Main Script Area
Display and edit scripts in this area. For more details on how to write a script, see the
section on Writing Revolution Code. The Script Editor will colorize and format scripts
automatically. When typing press tab to manually format the script. Press Enter (on the
numeric keypad) to compile the script. Press Enter again to close the Script Editor.

Note: It is not necessary to close the Script Editor to run a script, all that is required is
that the script is applied using the Compile button.

Breakpoints Area
Click next to a line of script to set or remove a breakpoint. A breakpoint specifies a point
at which script execution should pause and the debugger be loaded. For more details, see
the section on Debugging.

Compile Button
Compiles the script instantly. Any syntax errors will appear in the Error Display and the
script will not compile. A compiled script is not saved until the stack that contains it is
saved.

Tip: Press Enter (on the numeric keypad) to activate the Compile button. Press Enter
again to close the script editor.

59

Important: Note that none of the message handlers within the script will be available if
there is a Script Error during compilation, as none of the script will have compiled.

The Error Watcher
Compile and execution errors will appear here. Double click the icon next to the error
details to highlight the line the error occurred on in the script (if applicable).

Handler List
The handler list displays all the functions, commands and handlers which are part of the
current script. When a handler name is clicked, the script will jump to that handler.

Documentation
The Script Editor also has a built-in syntax dictionary. When this tab is active a summary
of the dictionary entry for the keyword which you are currently typing will be displayed.
The full dictionary entry can be viewed by clicking Launch Documentation. Alternatively
you can choose to view the entire entry in place by toggling the Full Document check box
at the bottom of the documentation pane.

60

Search Results
When you perform a 'find all' operation the results will be displayed under this tab.

61

Script Tabs
When multiple scripts are open they will appear as tabs in the script editor. Right
clicking on the tabs brings up a menu which allows a tab to be moved to a new window,
closed, or kept while closing all other tabs. Clicking a tab will bring up the script it
represents.

3.5 The Debugger
The Debugger helps you track bugs and understand code, by allowing you to pause the
execution of your programs or step through them line by line. You cause execution to
pause by setting breakpoints. When you run your script, execution will pause at a
breakpoint and you will be able to observe or edit variable values, continue execution or
set another breakpoint later in the code. Each debugger feature is outlined below:

62

Continue
When in debug mode, the Continue button will start running the code from the current
position. The program will run until the end is reached or another breakpoint is found.

When you are not in debug mode, the continue button can be used to execute a handler.
When you press it, a dialog will appear asking which handler you would like to call and,
if applicable, which parameters you'd like to pass. On clicking OK the Script Editor will
call the handler you specified. It will also remember the handler for next time. To change
the handler called later, choose Entry Point… from the Debug menu.

Stop Debugging
Will halt execution at the current point and stop debugging. You will then be able to edit
the script.

Show Next Statement
The Show Next statement option will return the debugger to the currently executing
statement. This is useful if you have switched tabs or scrolled during debugging.

Step Into Next Statement
Use Step Into to execute the next statement. If the next statement is a command or
function ‘Step Into’ will jump to that function or command allowing you to execute it
line by line.

63

Step Over Next Statement
Use Step Over to execute a command or function call without stepping through it line by
line. The code within the handler will run at full speed and execution will pause on the
line after the handler call.

64

Step Out
The Step Out function allows you to exit a command or function that you have previously
‘stepped into’. When selected, the rest of the current handler will run and execution will
pause on the line after the handler call. This is useful to avoid stepping through a long
command or function line by line when you have identified that the error you are looking
for is not within that command or function.

65

Debug Context
The Debug Context shows you the path of execution up to the current statement you are
paused on in the debugger. This allows you to identify where you are in your program
and which handlers called the current handler you are in. Changing the debug context
allows you to view variables from different parts of the program. Use this feature to find
an erroneous command call or a call where wrong parameters were used.

Variable Watcher
The Variable Watcher tab allows you to examine the value of variables within your
program while it is executing. As you step through your code these values will be
updated. The variable name is shown in the left column and its value adjacent on the
right. If a variable's value is too large to be displayed in the pane it will have a
magnifying glass next to it. Clicking this will bring up a watch window which allows the
variable's value to be changed. Variables can also be edited by double clicking on their
value in the variable watcher.

Tip: You can see the value of a variable by moving the mouse over the variables’ name
in the script field while debugging.

Breakpoint Management

66

Use breakpoints to specify where to pause execution in the debugger. You set
breakpoints by clicking in the gutter, or by right clicking in the Breakpoint Manager at
the bottom of the Script Editor and selecting “New Breakpoint”. Each breakpoint is
associated with a line of code and execution is paused when that line is reached.
Alternatively, a condition can be assigned to the breakpoint. In this case, execution will
only pause if the condition is true when the line is reached.

To see a list of all the breakpoints within a stack, including the script they are in, which
line they are on, and whether there is a condition attached, click the Breakpoints Manager
at the bottom of the Script Editor. The check box to the left of each breakpoint can be
used to enable or disable the breakpoint. Double click a breakpoint to go to that line in
the associated object's script. To edit a breakpoint, including adding a condition or
changing the line number, click the pencil icon.This can also be done by right-clicking on
the breakpoint, either in the Breakpoints Manager, or the Script Editor's gutter.

67

68

The Breakpoint Manager also allows you to set watches. These are associated with
variables rather than lines of code and will pause execution when the value of the
variable you are watching changes. Alternatively, if the watch has a condition attached,
execution will only pause if, when the variable's value is changed, the condition is true.
To add a watch, right click in the Breakpoint Manager and choose “New Breakpoint”.

3.6 The Script Editor Menubar
The Script Editor menubar contains commands to help you edit scripts.

3.6.1 The File Menu
The File menu contains commands to print a script or close the script editor, with or
without saving changes to the script.

Compile Compiles the current script.
Save Saves the current stack.
Close Closes the current script.
Print Prints the current script.
Quit Exits Revolution. Will prompt you to save your work if

69

applicable.

3.6.2 The Edit Menu
In addition to the standard commands to select, cut, copy and paste text, the Edit menu
contains the following, script-specific commands:

Revert Takes any changes which haven't been compiled, and removes

them from the current script.
Comment Places a comment character at the beginning of the selected

text. If more than one line is selected a comment character is
placed at the beginning of each line.

Uncomment Removes comment characters from the selected text.
Quick Find Opens the “find” field within the Script Editor.
Find and Replace… Brings up the Script Editor's find and replace dialog.
Go Brings up a dialog box which lets you enter a line number to

jump to in the script.
Variable Checking Variable checking causes Revolution to perform a stricter

check of your scripts. Using any variable without declaring it
first, or using a literal string without encloning it in quotes
causes a compile error. This behavior can be useful in tracking
down certain subtle problems such as misspelling a variable
name.

3.6.3 The Debug Menu
The Debug menu contains commands to aid in debugging scripts:

Show Next Highlights the next line of code to be executed. This is useful if

you have changed tab or scrolled your script during debbuging.

Step Into Executes the next line of the handler being debugged. If the next

line is a call to another handler, this command steps into that
handler. This menu item is disabled if the debugger is not running.

Tip: Press Space to step into the next line.

Step Over Executes the next line of the handler being debugged. If the next

line is a call to another handler, this command steps over that call,
skipping it and staying within the current handler.

Tip: Press Alt-Space to step over the next line.

70

Trace Begins slowly executing the handler being debugged, starting from
the current line.

Tip: The delay between lines can be changed by changing the value of the traceDelay
property.

Run Resumes normally executing the handler being debugged, starting
from the current line.

Tip: Press enter to activate the Run button.

Abort Stops running the handler being debugged.

Tip: Press control-period (or command-period) to activate the Abort button.

Toggle Breakpoint Adds/removes a breakpoint from/to the currently selected line.
Variables Changes the tab view at the bottom of the Script Editor to the

Variable Watcher tab.
Breakpoints Changes the tab view at the bottom of the Script Editor to the

Breakpoint Manager.
Entry Point Lets you define which handler execution should begin at when

debugging a script.
Script Debug Mode If this item is checked, the debugger is enabled: the execution

of the program will pause when a breakpoint is encountered
during script execution, and you can enter the debugger when
an execution error occurs. If unchecked the debugger is
disabled. For more details, see the section on Debugging.

3.6.4 The Handler Menu
The Handler menu contains a list of all handlers in the current script. Choose a handler to
go to that handler in the script.

3.6.5 The Window Menu
The Window menu contains the names of open script editor windows.

3.7 The Message Box
The Message Box is a command line tool that allows you to run scripts or perform
automated editing operations. It allows you to try out short scripts, test parts of your
program, provides a convenient output window for debugging and can be used for editing
and setting properties.

71

Tip: The Message Box is one of the more useful components in Revolution when you
are starting out and wanting to try out simple scripts. You will find you can try out many
of the script examples in this User's Guide or in the getting started materials on our
website simply by copy-pasting them into the Message Box.

The message box has the following modes:

Single Line – execute single line and short scripts
Multiple Lines – execute multiple line scripts
Global Properties – view and edit global properties
Global Variables – view and edit global variables
Pending Messages – view, cancel and edit pending messages
Front Scripts – view and edit frontScripts
Back Scripts – view and edit backScripts

3.7.1 Single and Multiple Line Modes
Use the Single and Multi-Line modes to execute short scripts.

Figure 10 – The Message Box in Single Line Mode

Command area Type valid Revolution code into this area. In Single Line mode,

separate multiple lines with ; (semi-colon) and press Return to
execute. In Multiple Line mode, press return to separate lines, and
press Enter to execute.

For example, in Single Line mode, to move all controls on the
current card 10 pixels to the left you would run:
repeat with i = 1 to the number of controls;
move control i relative –10,0; end repeat

In Mulitple Line Mode:
repeat with i = 1 to the number of controls

72

 move control i relative –10,0
end repeat

Type control-m to focus the command area and start typing,
whenever the Message Box does not have the focus. Press control-
u when typing to clear the command area.
In Single Line mode press the Up Arrow key to cycle backwards
through the history of previously entered and executed scripts.
Press the Down Arrow key to cycle forwards. In Multiple Line
mode, press alt-up arrow or alt-down arrow to cycle forwards or
backwards, respectively. Press control-u to clear the current
command area.
Typing the name of a global variable or property on its own will
result in the line being auto-completed to include put in front of
the global variable or property, thus the contents of that global will
be placed into the results area. For example typing:

time

Will be auto completed to:

put the time

The current time will be placed in the results area.

Results area Displays:
The result function after running code in the command area.
Any script that uses the put command without a destination
container.
Any script compile error created as a result of attempting to run
code placed in the command area.
Any execution error created as a result of attempting to run code
placed in the command area.

The msg special global will be updated whenever anything is
placed in the results area, either by script or by directly editing the
content of the results area. You can set or retrieve the content of
this variable in any script. For example, try running the following in
the command area:

put the clipBoardData; replace return with
return & return in msg

The result placed into the results area will contain the current
contents of the clipboard, with every return character replaced with
a second return character.

Stack selector Select a stack to work on. Prior to executing any script the
defaultStack will be set to the stack displayed in this menu. By

73

default the Message Box will choose the front most editable stack.
The menu is updated whenever you change the front most stack or
click on the Message Box. You can use this menu to choose an
alternative open stack. For example, running the following script in
the command area of the single line message box:

put the number of controls

Would place the number of controls in the current card of the stack
displayed in the menu, into the results area.

Intelligence The Message Box will attempt to auto complete the typing of a
name of an object property, resulting in putting the contents of that
property into the results area. You can choose whether the auto-
complete should attempt to use the currently selected object, or the
object directly underneath the mouse. For example, with an object
selected, entering:

width

Will result in:

put the width of the selObj

The width of the currently selected object will be placed in the
results area. The selObj will be substituted with the
mouseControl if you choose this option. In the example above,
that would result in the width of the object underneath the mouse
being placed in the results area instead. For more details on the
selObj function or the mouseControl functions, see the
Revolution Dictionary.

Lock icon This option prevents the Stack selector from updating automatically
when you change stacks. Use this option if you want to run a
number of commands on a specific stack regardless of which stack
is currently in front.

3.7.2 Global Properties
The Global Properties mode allows you to view and edit all global properties. Scroll to
select a property from the list on the left and select it to view or edit it. Typing a portion
of the property name into the Filter field at the top will filter the list of properties.
Changes to global properties take effect immediately. If a property is ‘read only’ this will
be indicated when you select it and editing it will have no effect. For more details on
Global Properties, see the section onGlobal Properties.

3.7.3 Global Variables
The Global Variables mode allows you to view and edit all global variables.
Environment variables are shown first, followed by other variables. Scroll to find a

74

variable from the list on the left and select it to view or edit it. Typing a portion of the
variable name into the Filter field at the top will filter the list of variables. Changes to
global properties take effect immediately. The Show Revolution UI Variables is an
advanced option, discussed in the section on Editing the Revolution User Interface. For
more details on Global Variables, see the section on Global Variables.

3.7.4 Pending Messages
The Pending Messages mode allows you to view all the current timer based messages that
are pending. This is the same as the global property the pendingMessages. You
can select a pending message to edit its script or cancel it.

Tip: You can cancel all current pending messages using the Suppress Messages button
on the toolbar.

Pressing update refreshes the list with the current list of pending messages. The Auto
Update mode refreshes the list continuously. Note that the Auto Update takes place
every 200 milliseconds. If your messages fire more quickly they may not be displayed.
For more details on Pending Messages, see the section on Timer Based Messaging. The
Show Revolution UI Messages is an advanced option, discussed in the section on Editing
the Revolution User Interface.

3.7.5 Front Scripts & Back Scripts
These modes list all the scripts currently available as libraries at the front or back of the
message path. This is the same as the global properties the frontScripts and the
backScripts. Select a front or back script to remove it or edit its script. For more
details on library scripts, see the section on Extending the Message Path. The Show
Revolution UI Scripts is an advanced option that displays all of the libraries used by the
Revolution IDE. This is discussed in the section on Editing the Revolution User
Interface.

3.7.6 Stacks In Use
This mode is the same as the Front and Back scripts mode, except that it displays the
stacksInUse global property. You can also add a stack directly using the Add button.

3.8 The Toolbar
The main toolbar provides easy access to commonly used functions.

Figure 11 – The Main Toolbar

For details on what each toolbar icon does, see the section on the Menu Bar (above).

75

To hide and show the text or icons on the tool bar, use View -> Toolbar Text and View -
> Toolbar Icons. To hide the Toolbar completely, uncheck both options.

3.9 Find and Replace
The Find and Replace dialog allows you to search your entire application, a portion of the
application, multiple files in a directory, or stacks specified in your application’s
stackFiles property. You can search for object names, scripts, field & button text,
custom properties, and other properties. After performing a search you can replace the
search term with a replacement term, either in all of the results or on a selection of the
results.

Figure 12 – Find and Replace

Find field Enter a search term.
Search In menu A menu with the following options:

The current selection – Searches the currently selected objects
This card – Searches the current card of the front most editable
stack
This stack – Searches the front-most editable stack
This stack File – Searches the mainStack and all of the subStacks
within the stack file associated with the current front most editable
stack

76

This stack file and its stack files – Includes the stacks referenced
in this stacks stackFiles property. For more details on the stackFiles
property, see the section on Structuring Your Application.

Important: StackFiles are normally set on the mainStack of your application. Ensure
that you bring the mainStack to the front before searching its stackFiles. If you search
using this option when a subStack is in front, your search will not include any stackFiles.

 All open stacks – Searches all open stack files that are currently on
screen
All open stack files – Searches all open stacks, including all
mainStacks and subStacks in each file
Specific open stack file – Allows you to select a specific open
stack file to search
All stack files in a folder – Searches all the stacks in a folder you
specify
Global variable contents – Searches the contents of currently
declared global variables

Find button Performs the search
Case Sensitive Specifies that the search should be case sensitive (e.g. "a" and "A"

are treated as different characters)
Regular
Expression

Specifies that the Find Field contains a regular expression instead
of plain text. A regular expression allows you to describe a pattern
of text to match. For more details on using regular expressions, see
the section on Using Regular Expressions below.

Obey dontSearch
properties

Specifies that fields, cards or groups with their dontSearch property
set to true should be excluded from the search. For more details on
the dontSearch property, see the Revolution Dictionary.

Search marked or
unmarked cards
only

Specified that the search should be restricted to either marked or
unmarked cards. For more details on marked and unmarked cards,
see mark in the Revolution Dictionary.

Search in… Allows you to specific which object properties to search:
Name Searches an object’s short name property.
Script Searches an object’s script property.
Custom Searches and objects custom properties and custom property sets.

For more details on Custom properties, see the section on Custom
Properties.

Field Text Searches within field text.
Button Text Searches button text. This includes text in menus. For more

information on buttons and menus, see the section on Control
Types.

All Other Searches all other commonly used object properties. For more
details on exactly what is included, see the properties entry in the
Revolution dictionary.

Results column Allows you to sort search results by clicking. Drag between the

77

header column headers to change column widths.
Search Results
Area

Displays a list of objects that match the search parameters.

Remove from List Removes the currently selected search result in the Search Results
area from the list. Once removed, the object will no longer be
included in any replace operation.

Replace With Specifies a term to use to replace the search term with.
Replace in All Replaces the Find Field with the Replace With field in all objects

currently listed in the Search Results Area.

78

Chapter 4 Building a User Interface
The user interface for your application is often one of its most important features.
Building a clear, logical and aesthetically pleasing user interface will make all the
difference to the success of your application. This chapter discusses how to build a user
interface using Revolution. It tells you how to create and lay out controls, which objects
to use and even how to build your own custom objects. We then touch briefly on some
tips for good user interface design.

79

4.1 Creating and Organizing Objects

4.1.1 Creating Controls with the Tools Palette
The main tools palette allows you to change between Edit and Run mode, create objects,
and edit bitmap images with the paint tools.

Figure 13 - The Main Tools Palette

Run mode Click to enter run mode. When in run mode, objects receive all the

normal messages that drive a Revolution application. For example,
clicking on a button in run mode will cause a mouseUp message to
be sent to it and the script will run.

Edit mode Click to enter edit mode. When in edit mode, objects do not receive
messages when you click on them, and you can move, resize or edit
the properties for objects.

For more details about the run and Edit mode, see the section The
‘Edit’ and ‘Run’ Mode.

80

Button objects
Field objects
Menu objects
Scrollbar objects
Image & Player

Drag any object within these areas onto an editable stack to create a
new object. Double-click an object to create a object of that type in
the center of the front most editable stack.

For more details on all of these objects, see the section about each
object type later in this chapter.

Vector Graphics Press the grey triangle at the bottom right of the Image & Player
area to hide and show this section. Click to choose the type of new
graphic you want to create. Use the fill bucket to choose the fill
color, the fill pencil to choose the line color, the line thickness
menu to choose the line thickness, and the optional shape menu to
choose preferences specific to the type of graphic selected. Click
and drag in an editable stack to create the new graphic.

Tip: You can also create objects using the New Control sub-menu in the Object menu,
or by typing create [object type] in the Message box. For more information on creating
objects using the Message Box, see the section on Building Interfaces Using Scripts, later
in this chapter.

Bitmap graphics The paint tools allow you to edit bitmap graphics that have been
imported into Revolution or create your own. To use them, create
an image object and paint within that area, or modify an existing
image. You cannot use the paint tools to edit an image that has its
filename property set, as that image data is stored outside
Revolution. For more details on working with images, see the
section on Images later in this chapter and the chapter on Working
with Media.

Tip: To open a system-standard color chooser, double-click on color chooser popup
menus at the bottom of the Vector Graphics or Bitmap Graphics sections of the tools
palette.

81

4.1.2 Alignment & Layering

Figure 14 – Size & Position Inspector

Lock size and
position

Locks the object so that its size and position cannot be adjusted
interactively with the mouse when in edit mode. This also prevents
images, groups and players from automatically resizing to display
their entire content whenever the card that they are on is reopened.
For more details see the entry for lockLocation in the Revolution
Dictionary.

Width & Height Allows you to set the width and height of the object(s) currently
being operated on by the Property Inspector. Objects are resized
from their center. For more details, see the width and height
properties in the Revolution Dictionary.

Fit Content Automatically sizes the object large enough to display its content.
In the case of buttons, the content is the text and any icon. For
images, this is the native width and height of the original image
before any scaling. For more details, see the entry for
formattedWidth and formattedHeight in the Revolution Dictionary.

Location Sets the objects position (the center of the object) relative to the top
left of the card.

Left, Top, Right
& Bottom

Sets the position of one of the object’s edges.

82

Layer Sets the layer of the object. The buttons with arrows allow you to
send an object to the back, move an object back one layer, bring an
object forward one layer and bring an object to the front. Layer
determines which objects are displayed in front or behind others, as
well as the object’s number and tabbing order. Note that you cannot
relayer objects that are grouped unless you are in edit background
mode, or have the relayerGroupedControls set to true. For more
details, see the section on Group & Backgrounds. For more details
on tabbing order see the section on The Keyboard Focus below.

Use the Align Objects Inspector to resize objects relative to other objects, to reposition
objects and/or to relayer objects.

Figure 15 – Align Objects Inspector

To open the Align Objects Inspector, select multiple objects, then open the Inspector and
choose Align Objects from the menu at the top of the Inspector. The Align Objects pane
will automatically be displayed if you select multiple objects of different types.

83

Important: The Align Objects Inspector resizes objects relative to each other. Always
select the object you want to use as a reference first, then select other objects that you
want to make the same as that object next. If you want to distribute objects, select them
in the order that you would like them to be distributed.

Equalize Make objects the same width, height, or have exactly the same

rectangle.
Align Aligns the objects by their left, right, top or bottom edges, or by

their horizontal center or vertical center, using the first object
selected as a reference.

Distribute Distributes the objects with an equal difference between them,
using the order they were selected. ‘First to last’ selected will
distribute objects evenly between the edges of the first and last
objects selected. ‘Edge to edge’ will distribute the objects so that
their edges touch each other exactly. ‘Across card’ will distribute
the objects evenly over the entire card area.

Nudge Nudge the selected object the number of pixels specified in the
center of the arrows. To change the number of pixels, click on the
number.

Relayer ‘First to last selected’ will relayer the objects in the selection in the
order they were selected. 'Last to first" will relayer the objects in
reverse order. Use these buttons to set the tab order of a set of
objects. For more information on the tabbing order, see the section
on The Keyboard Focus below.

4.1.3 The Keyboard Focus
The focus is an indication to the user of which control will receive a keystroke. Exactly
which objects are capable of receiving the keyboard focus depend on the current
operating system, and the properties applied to the control. Edit fields can receive the
focus, as can all other objects on Windows and Linux, and many objects on Mac OS.

The order in which the user moves through controls that can receive the keyboard focus
is determined by the object’s layer. When a card is opened, Revolution automatically
focuses the first object on the card that is capable of receiving the keyboard focus.

You can turn on the ability of an object to get the keyboard focus by checking the Focus
with Keyboard option in the object’s Inspector, or by setting its traversalOn property by
script.

On some platforms objects give an indication that they have the focus by displaying a
border. You can specify whether a border should be displayed by setting an object’s
Show Focus Border option in the Inspector, or setting its showFocusBorder property by
script.

84

4.2 Object & Control Types

4.2.1 Stacks – for displaying windows, palettes and dialog boxes
In Revolution, each window is a stack. This includes editable windows, modeless and
modal dialog boxes, and palettes, as well as sub-windows available on some operating
systems, such as sheets and drawers.

Tip: If you want to make controls within a stack scale and position automatically when
you resize the stack, see the section on the Geometry Manager.

This topic discusses the way windows are implemented in Revolution applications; how
to change window appearance; and how to control the behavior of the various window
types. This topic does not cover the organization of stacks within a stack file, which is
covered in detail in the section Structuring Your Application.

Caution: Do not start your stack name with "rev". Stacks with names starting with "rev"
are reserved by the Revolution development environment.

You create a new stack – which can then be displayed in any number of modes (as
described below) – by choosing File -> New Mainstack. You can edit stack properties
by choosing Object -> Stack Inspector.

4.2.2 Window Types and the Mode of a Stack
The nature of a stack's window depends on the stack's style property and on what
command was used to open the stack. You can either specify the window type when
opening the stack, or allow the stack's style property to determine the type of window it is
displayed in.

Note: We recommend you specify the mode you want a stack to be opened in as part of
the command you use to open the stack, rather than using the style property. This makes
it easy to switch a stack between editable mode in the development environment, and for
example, a dialog in the runtime environment.

4.2.3 The Standard Window Types
Revolution windows are usually one of four types: editable or topLevel windows,
modal or modeless dialog boxes, or palette windows.

85

Important: You will normally create a new stack and edit it while it is in editable mode.
If you want to create a dialog, create the stack like any other stack. Then when opening it,
specify in the script that it should be displayed as a dialog, or a palette, etc. The
appropriate commands for doing this are detailed with each type of window below.

You can test out these commands as you work on your window layout and scripts, using
the Message Box (see section of the same name), or using the window context menu (see
Modal Dialog Boxes, below). For more details on writing scripts in general, see the
section on Writing Revolution Code.

Most windows are editable or topLevel windows, and this is the default mode for
Revolution stacks. If you open a stack using the go command (without specifying a
mode), or using the Open Stack menu item, then the stack is displayed as an editable
window unless its style property specifies another window type.

4.2.4 Editable Windows – for documents
An editable window has the appearance and behavior of a standard document window. It
can be interleaved with other windows, and you can use any of Revolution's tools to
create, select, move, or delete objects in the stack.

86

Figure 16 – Editable Document Windows on Multiple Platforms

To display a stack in an editable window, you use the topLevel or go commands:

 topLevel stack "My Stack"
 go stack "My Stack" – "topLevel" is the default mode
 go stack "My Stack" as topLevel

Stacks whose style property is set to "topLevel" always open as editable windows,
regardless of what command you use to open them.

Note: If the stack's cantModify property is set to true, the window retains its standard
appearance, but tools other than the Browse tool can no longer be used in it. In other
words, every tool behaves like the Browse tool when clicking in an unmodifiable stack's
window.

4.2.5 Modeless Dialog Boxes – for alerts and settings
Modeless dialog boxes are similar to editable windows. Like editable windows, they can
be interleaved with other windows in the application. Their appearance may differ
slightly from the appearance of editable windows, depending on the platform.

87

Figure 17 – Modeless Dialog Boxes on Multiple Platforms

Like unmodifiable stacks, modeless dialog boxes do not allow use of tools other than the
Browse tool. Use modeless dialog boxes in your application for windows such as a
Preferences or Find dialog box, that do not require the user to dismiss them before doing
another task.

To display a stack in a modeless dialog box, you use the modeless or go commands:

 modeless stack "My Stack"
 go stack "My Stack" as modeless

Stacks whose style property is set to "modeless" always open as modeless dialog
boxes, regardless of what command you use to open them.

4.2.6 Modal Dialog Boxes – for alerts and settings
A modal dialog box is a window that blocks other actions while the window is displayed.
You cannot bring another window in the application to the front until the dialog box is
closed, nor can you edit the stack using the tools in the Tools palette. While a modal

88

dialog box is being displayed, the handler that displayed it pauses until the dialog box is
closed.

Figure 18 – Modal Dialog Boxes on Multiple Platforms

Modal dialog boxes do not have a close box. Usually, they contain one or more buttons
that close the window when clicked.

Important: If you mistakenly open a modal dialog box without having included a button
to close the window, use the contextual-menu shortcut (Control-Shift-Right-click for
Unix or Windows, Command-Control-Shift-click for Mac OS) to display a context
menu. Choose toplevel to make the stack editable.

To display a stack in a modal dialog box, you use the modal command or go
commands:

 modal stack "My Stack"
 go stack "My Stack" as modal

Stacks whose style property is set to "modal" always open as modal dialog boxes,
regardless of what command you use to open them.

4.2.7 Palettes – for accessory and tool windows
A palette has a slightly different appearance, with a narrower title bar than an editable
window. Like dialog box windows, a palette does not allow use of tools other than the
Browse tool.

89

Figure 19 – Palette Windows on Multiple Platforms

A palette floats in front of any editable windows or modeless dialog boxes that are in the
same application. Even when you bring another window to the front, it does not cover
any palettes.

Note: On some Unix systems, palettes have the same appearance and behavior as
ordinary windows and do not float. On Mac OS systems, palette windows disappear
when their application is in the background and another application is in front.

To display a stack in a palette, you use the palette command or go commands:

 palette stack "My Stack"
 go stack "My Stack" as palette

Stacks whose style property is set to "palette" always open as palettes, regardless of
what command you use to open them.

4.2.8 Ask Question Dialog – for asking a question
The ask question dialog is a special type of window that is designed to make it easy to
ask the user a question. It includes special syntax for opening the dialog with question
text and returning any answer to the script that called it. You can also specify the window
title, as well as an icon to be displayed in the window. The font, object positions, button
order and icon will automatically change to reflect the operating system. However, if you
do require more flexibility than is provided in this dialog, you should create your own
modal dialog box instead (see above).

90

Figure 20 – Ask Question Dialog Boxes on Multiple Platforms

To display the ask dialog, use the following commands:

ask "What is your name?"
ask question "What is the answer?" titled "Question"

Tip: You can try this example out right now by coping and pasting it into Tools ->
Message Box, then pressing return.

The word question specifies the icon, and may be any of question | information | error
warning.

To change the miniature application icon shown in the Mac OS X platform picture above,
see the entry for gREVAppIcon in the Revolution Dictionary.

The result is returned in the special variable it.

if it is "Joe" then doSomeThing

For complete details on the syntax, see the ask command in the Revolution Dictionary.

91

Figure 21 – Icons for Ask and Answer Dialogs on Multiple Platforms

4.2.9 Answer Alert Dialog – for displaying a dialog
Like the ask dialog box above, the answer dialog is a special dialog that has been
designed to make it easy to display information in a dialog on screen and optionally allow
the user to make a choice from a list of up to seven choices. The answer command opens
the dialog, lets you specify the text and the button choices, and returns the button click to
the script that called it. You can also specify the window title, as well as an icon to be
displayed in the window. As with the ask dialog, the font, object positions, button order
and icon will automatically change to reflect the operating system. However, if you do
require more flexibility than is provided in this dialog, you should create your own modal
dialog box instead (see above).

Figure 22 – Answer Dialogs on Multiple Platforms

answer "Hello World!"
answer question "What city is the capital of Italy?" with
"Paris" or "London" or "Rome" titled "Multiple Choice"

The result is returned in the special variable it.

92

if it is "Rome" then answer information "That was the
correct answer."

For complete details on the syntax, see the answer command in the Revolution
Dictionary.

The answer dialog is implemented internally as a stack attached to the Revolution IDE.
For details on customizing the IDE, see the section on Editing the Revolution User
Interface.

Tip: If you're not sure what a stack's name is, you can use the mouseStack function to
find out. Enter the following in the Message Box (Tools -> Message Box), then move the
mouse pointer over the stack window and press Return:

Tip: put the mouseStack

4.2.10 File Selector Dialogs
The file selector dialogs allow you to display the system standard dialogs. These dialogs
allow the user to select a file or a set of files, select a directory, or specify a name and
location to save a file.

The syntax for bringing up the file selector dialogs mirrors the syntax for the alert and
question dialogs detailed above. However, unlike these dialogs, the file selector dialogs
are displayed using the system standard dialogs where available. The notable exception at
the time of this writing is Linux platform, where a built-in dialog is used instead due to
more limited OS support. (You can force the other platforms to use this built-in stack
based file selector by setting the systemFileSelector global property.)

93

Figure 23 – Answer File dialog for selecting a file

answer file "Select a file:"
answer file "Select an image file:" with type \
 "QuickTime Movies|mov" or type "All Files|"

The file path to the file selected by the user is returned in the special variable it. If the
user cancelled the dialog, the special variable it will be empty and "cancel" will be
returned by the result function.

For complete details on the syntax, see the answer file with type in the
Revolution Dictionary.

94

Figure 24 – Ask File dialog for saving a file

ask file "Save this document as:" with "Untitled.txt"
answer file "Select an image file:" with type \
 "Text Files|txt" or type "All Files|"

The file path to the file to be saved is returned in the special variable it. If the user
cancelled the dialog, the it variable will be empty and cancel will be returned by the
result function.

For complete details on the syntax, see the ask file with type in the Revolution
Dictionary.

95

Figure 25 – Answer folder dialog for choosing a directory

answer folder "Please choose a folder:"
answer folder "Please choose a folder:" \
 with "/root/default folder"

The file path to the folder selected by the user is returned in the special variable it. If
the user cancelled the dialog, the it variable will be empty and "cancel" information will
be returned by the result function.

For complete details on the syntax, see answer folder in the Revolution Dictionary.

4.2.11 Color Chooser Dialog
The answer color dialog allows you to display the operating system’s standard color
picker dialog.

Figure 26 – Answer color dialog for choosing a color

answer color

The color chosen is returned in the special variable it. If the user cancelled the dialog,
it will be empty and "cancel" will be returned by the result function.

For complete details on the syntax, see answer color in the Revolution Dictionary.

96

4.2.12 Printer Dialogs
The printer dialogs allow you to display the standard printer and page setup dialogs.

Figure 27 – Answer printer for standard printer dialog

Use the answer printer command to display a standard printer dialog prior to
printing. If the user cancels the dialog, "cancel" will be returned by the result function.

4.2.13 Visual Effect Dialog
Answer effect allows you to display the QuickTime special effects dialog box.

97

Figure 28 – Answer effect dialog for choosing a QuickTime effect

Use the answer effect command to display a standard QuickTime effect dialog. The
effect will be returned as binary data in the special variable it. You can use this variable
with the visual effect command to create a visual effect transition. If the user
cancels the dialog, it will be empty and "cancel" will be returned by the result function.

4.2.14 Alpha Blend Windows – for Enhanced Tooltips and Multimedia
Use the Shape option in the Stack Inspector to set a stack’s windowShape property to the
transparent, or alpha channel of an image that has been imported together with its alpha
channel (i.e. in either PNG or GIF format). This allows you to create a window with
"holes" or a window with variable translucency. You can apply a shape to any type of
stack, regardless of the mode it is opened, allowing such a window to block as a dialog,
float as a palette, etc.

Important: The border and title bar of a stack are not shown if the stack's
windowShape is set. This means you will need to provide methods of dragging and
closing the window if you want the user to be able to do these tasks.

98

Figure 29 – Window with alpha mask applied

You can change the windowShape property dynamically by script to a series of images
to create an animated translucent window.

4.2.15 System Palettes – for utilities floating above applications
A system palette is like a palette, except that it floats in front of all windows on the
screen, not just the windows in its application. Use system palettes for utilities that you
want the user to be able to see and access in every application.

99

Figure 30 – System Window floating above other applications

To display a stack in a system palette, you turn on the check box in the Stack Inspector
"Float Above Everything". For more details on this feature, see the entry for
systemWindow in the Revolution Dictionary.

Using this feature overrides the stack's style or mode.

The system palette style is currently not supported on Linux & Unix.

4.2.16 Sheet dialog boxes – Mac OS X only
A sheet is like a modal dialog box, except that it is associated with a single window,
rather than the entire application. A sheet appears within its parent window, sliding from
underneath the title bar. While the sheet is displayed, it blocks other actions in its parent
window, but not in other windows in the application.

To display a stack in a sheet dialog box, you use the sheet command:

 sheet "My Stack" -- appears in defaultStack
 sheet "My Stack" in stack "My Document"

Note: Note the answer, answer file, answer folder, ask, ask file, and answer folder
commands (see above) all include an ...as sheet form, so you can display these dialog
boxes as sheets on Mac OS X. You can safely use the ‘as sheet’ form on cross-platform
application as on systems other than OS X, the sheet command displays the stack as an
ordinary modal dialog box.

4.2.17 Drawers – Mac OS X only
A drawer is a subwindow that slides out from underneath one edge of a window, and
slides back in when you close it. You usually use a button in the main window to open
and close a drawer.

To display a stack as a drawer, you use the drawer command:

 drawer "My Stack" at left -- of defaultStack
 drawer "My Stack" at bottom of stack "My Document"

On systems other than OS X, the drawer command displays the stack as an editable
window. Because this does not map well to other platforms, we recommend you only use
drawers for applications that are only being developed for Mac OS X.

Use drawers to hold settings, lists of favorites, and similar controls that are accessed
frequently but that don't need to be constantly visible.

100

4.2.18 Stack menus – for displaying non-standard menus

Note: Usually a menu in a Revolution application is implemented as a button. We
recommend that menus are implemented using buttons, as these will automatically be
drawn with the native theme on each platform. For more details, see the section on
Menus below

It is also possible to display a stack as a pulldown, popup, or option menu. Stack
menus are used when a menu needs to contain something other than just text. For
example, a popup menu containing a slider, or an option menu consisting of icons instead
of text, can be implemented as a stack menu.

To display the stack menu, you create a button and set its menuName property to the
stack's name. When the user clicks the button, the stack is displayed with the behavior of
a menu. Internally, the menu is implemented as a window, and you can use the popup,
pulldown, or option command to display any stack as one of these menu types.

4.2.19 Stack Decorations – for Window Appearance
Stack decorations allow you to specify how the title bar and border of a window will be
drawn. You can access the stack decorations options in Object -> Stack Inspector.

Apart from the differences in appearance between different window modes, the
appearance and functionality of a window can vary depending on the stack's properties
and the platform it is being displayed on.A window's title bar displays the window's title,
as well as a close box, minimize box or collapse box, and maximize box or zoom box.

101

Figure 31 – Window Decorations on Windows and Mac OS X

Note: On Mac OS X, a stack's shadow property controls whether the stack window has
a drop shadow. On OS X systems, you can set this property to false to create a window
with no shadow.

The properties above can also be set by script, for more details see the decorations
property in the Revolution Dictionary.

102

While the stack's mode is separate from its decorations, the mode may affect
whether these properties have an effect. If the decorations property is set to
"default", it displays the appropriate decorations for the current window type on the
current platform.

4.2.20 Button Controls – for performing actions
A button is a clickable object that is typically for allowing a user to perform an action by
clicking.

Figure 32 – Button Objects on Multiple Platforms

Check boxes and radio buttons are used to allow the user to make choices. Radio buttons
are used when only one option for a set of options may be selected at any time. Check
boxes are used where some options may be turned on and others may be off.

Note: Revolution will automatically enforce the rule of highlighting one radio button at
a time if you place the radio buttons together in a group. For more details on groups, see
the section on Groups and Backgrounds.

Figure 33 – Check Boxes and Radio Buttons on Multiple Platforms

All button objects in Revolution are highly flexible and customizable. Common settings
include the ability to show and hide the border or fill, and to display an icon.

Icons allow you to provide a wide range of functionality. For example you can create a
roll over effect by setting a hover icon. Or you can create a custom check box by setting
an icon and a highlight icon – doing so will replace the system standard check box and
display your icon in each state depending on whether the button has been pressed or
depressed.

103

Figure 34 – Custom Buttons for Multimedia

Important: Button icons are not limited in width or height. They can be animated by
using an animated GIF. In fact, an icon can reference any image contained within your
Revolution stack file. Referencing an image in this way saves disk space and allows you
to update all icons in your stack by updating a single image. See the chapter Working
with Media for more information.

4.2.21 Text Field Controls – for displaying or entering text
Fields allow you to display text. Fields can optionally allow the user to edit the text.
Fields support multiple fonts, styles and colors, images and a subset of basic HTML tags.
Fields can be linked to a database using the Database Query Builder or by directly
accessing a database with the database library. They can display and render XML using
the XML library. List fields allow the user to select one or a set of choices. Table fields
allow display of data similar to a spreadsheet. Other types of field can easily be created,
including tree views, or any hybrid between these types, with a little scripting. At the
time of this writing there is also a 3rd party library available that allows you to host a web
browser within an object and control it by script.

Figure 35 – Field Controls

4.2.22 List and Table Field Controls
List fields allow you to display a set of choices. Users cannot edit list fields. You can
specify whether the user is allowed to make a single selection or multiple selections.

104

Figure 36 – List Fields

4.2.23 Table Field Control – for displaying a table
Table fields allow you to display data in cells, and optionally allow the user to edit the
cells.

Figure 37 – Table Field

4.2.24 Cards
Each stack contains one or more separate screens of controls. Each screen is known as a
card. Each card can have an entirely different appearance, or all the cards in a stack can
share some or all elements, by using shared groups, known as backgrounds (see below).

Choosing Object -> New Card will create a new card within the current stack. The new
card will either be completely blank, or will contain any shared groups from the previous
card.

105

4.2.25 Groups & Backgrounds – for organizing, and sharing controls
Groups, Revolution's most versatile object type, are used for several purposes: radio
button clusters; menu bars; for creating scrollable object areas within cards; and as
backgrounds for displaying sets of objects that are shared between cards. Groups can also
be used for creating a simple card and stack database, by holding fields that contain a
different record on each card.

What Is a Group?
A group is a single object that holds a set of objects. Objects are grouped by selecting the
controls you want to include in the group, then using the group command or choosing
Object –> Group Selected.

Once you've created the group, it becomes an object in its own right. You can select,
copy, move, and resize the group, and all the objects in the group come with it. The
objects in the group maintain their own identities, and you can add objects to the group or
delete them, but the objects are owned by the group instead of the card.

A group has its own properties and its own script. Groups can be any size, can be shown
or hidden, and can be moved to any location in the stack window, just like any other
control. Like other controls, groups can be layered in any order with the other controls on
the card. Groups can also display a border around a set of objects.

Figure 38 – Group of radio buttons with group title and border

Unlike other controls, however, groups can appear on more than one card. You place a
group on a card using the place command or the Place Group submenu in the Object
menu.

Important: A group that is shared between cards appears at the same location on each
card. A change made to the position of a shared group on one card is reflected on all the
other cards that share the group.

Groups and Backgrounds

106

Both the term group and the term background can be used to refer to groups. The
terms are interchangeable in some circumstances and mean different things in others. The
differences are explained in more detail below.

In general, the term group refers to groups that are placed on a card, while the term
background refers to all the groups in a stack that are available for use as backgrounds
(see below). The expression the number of groups evaluates to the number of
groups on the current card. The expression the number of backgrounds
evaluates to the number of background groups in the current stack, including groups that
are not placed on the current card.

Tip: When you refer to a group by number, if you use the word group, the number is
interpreted as referring to the groups on the referenced card, in order by layer. If you use
the word background, the number is interpreted as referring to the groups in the stack, in
the order of their creation.

Tip: For example, the expression the name of group 1 evaluates to the name of the
lowest-layered group on the current card, while the expression the name of background 1
evaluates to the name of the first group that was created in the stack--whether or not that
particular group is placed on the current card, or appears on any card at all.

The term background can be also used to refer to the set of cards that share a
particular group. The following statement goes to the third card on which the group
named "Navigation" is placed:

go card 3 of background "Navigation"

Nested Groups
Revolution supports nested groups (one group containing another). Since a group is itself
a control, it can be contained in another group.

Creating a nested group is just like creating a group: select the controls you want to group
(including the existing group), then choose Object -> Group Selected. The existing
group is now a member of the new group.

Selecting and Editing Groups
To select a group, simply click on one of the objects that is contained within it. This will
select the group.

If you want to select an object within the group, instead of the group itself, there are two
ways to do so. You can turn on the Select Grouped option on the toolbar or in Edit ->
Select Grouped Controls. This causes groups to be ignored when selecting objects,
allowing you to select objects inside a group as if the group didn’t exist. You can enter
this mode by script by toggling the selectGroupedControls global property.

107

Alternatively you can go into edit group mode, a special mode that only displays the
objects within that group. Select the group, then press Edit Group on the toolbar or
choose Object -> Edit Group. When you have finished, choose Object -> Stop Editing
Group. You can toggle this mode programmatically by using the commands start
editing and stop editing.

Tip: If a group's border has been set, an outline appears at the group's edges. However,
clicking within or on the border does not select the group. To select the group, you must
click one of its controls.

Placing and Removing Backgrounds
Once you create a group, you can display it on any or all cards in the stack. First, ensure
that the group’s Behave as Background option has been set in the Inspector. Then
navigate to the card you want to place the group on and choose Object -> Place Group
to place an instance of a particular group on the current card. You can control these
features from script by using the backgroundBehavior property and place
command.

Note: When you create a new card, if there are any groups on the current card whose
Behave as Background has been set, they are automatically placed on the new card. To
make it easy for all the cards in a stack to share a single group, create the group on the
first card and set this property to true, before you create any other cards.

To remove a group from the current card without deleting it from the stack select the
group and choose Object -> Remove Group. The group disappears from the current
card, but it's still placed on any other cards that share the group. You can remove a group
by script using the remove command.

Tip: You can use the start editing command from the Message Box to edit a group that
has not been placed on any card. Since the group is not on any card, you must refer to it
using the term "background" instead of the term "group".

You can completely delete a group in the same way as you delete any other object, by
selecting the group and choose Edit -> Clear or pressing backspace.

Important: Deleting a background group removes it from all the cards it appears on, and
from the stack itself.

108

To dissolve a group back into its component controls, select the group and choose Object
-> Ungroup. You can ungroup a group by script using the ungroup command.
Ungrouping deletes the group object and its properties (including its script) from the
stack, but does not delete the controls in it. Instead, they become card controls of the
current card. The controls disappear from all other cards the group is on.

Note: If you ungroup a group, then select the controls and regroup them before leaving
the current card, the group is restored as it was. However, leaving the current card makes
the ungrouping permanent and deletes the group from all other cards it was on.

Groups and the Message Path
For details on how groups and backgrounds fit into the Message Path, see the section on
Groups, Backgrounds & The Message Path, below.

4.2.26 Graphics, Images, Players, Audio & Video Clip Objects – for
multimedia
Revolution supports a wide range of media formats, allowing you to produce rich media
applications. The image object allows you to import or reference images, manipulate
images by script or interactively with the paint tools, and save them out in different
formats with variable compression options. Support extends to alpha channeled PNG
images and animated GIF images. Images can be imported and reused within a stack to
create custom or interactive interface elements. To learn how to work with these objects
in a script, see the section on Working with Media.

Image formats supported include GIF, JPEG, PNG, BMP, XWD, XBM, XPM, or PBM,
PGM, or PPM files. On Mac OS systems, PICT files can also be imported (but they
cannot be displayed on Unix or Windows systems). For full details on each of these
formats, see the section on Working with Media.

You can import images using File -> Import as Control -> Image File. You can
reference an image using File -> New Referenced Control -> Image file.

Paint tools can only be used on images that have been imported as a control. See the
section on Using the Paint Tools for details on how to use the paint tools.

Figure 39 – Image, Graphic and Player objects

Vector graphics can also be created and manipulated with the graphic tools and by script.
Revolution supports paths with variable fills, gradients, blended and antialiased graphics.
At time of this writing there is also a 3rd party library that allows the import and export of

109

SVG format graphics. Use graphic objects to create interactive interfaces, graphs, charts
or games.

Use the player object to display and interact with any media formats supported by
QuickTime. Revolution allows you to turn on and off tracks within a movie, pan, zoom or
change location within a QTVR movie, set callback messages that trigger scripts at
specific points in the movie, and stream movies from a server. At time of this writing
there is also a 3rd party library that allows you to edit and save movies by script.

The Audio Clip & Video Clip objects allow you to embed audio or video clip data within
a stack. Some audio clip formats can be played back directly without QuickTime
installed. They do not have any visual representation and can be accessed by script or in
the Application Browser. Players, Audio & Video clips are covered in their respective
sections within the chapter on Working with Media.

4.2.27 Menu Controls – for displaying choices
Menus are used to display a list of choices. The pulldown menu displays a standard
pulldown menu, and can be automatically inserted into the main menu bar on Mac OS
systems. The option menu allows a choice from a list. The combobox allows the user
to type an option or choose from a list. Popup menus can be displayed underneath the
cursor and used to provide context sensitive options anywhere in your application. For
more information on working with pulldown menus within the main menu bar, see the
section on the Menu Builder below.

Menu contents can be defined using a list of item names and special characters to indicate
where shortcuts and checkmarks should be placed. This is the most common type of
menu and is known as a contents menu. Revolution will automatically draw menus
defined as contents menus using the native system look on each platform. When you
choose an item from a contents menu, Revolution will send a menuPick message along
with the name of the item chosen.

Alternatively, menus may be constructed from a stack panel, giving you complete control
over the menu contents and allowing the display of any object type of functionality.
When you choose an item from a stack panel menu, the individual object within the menu
will receive a mouseUp message. Note that panel menus cannot be displayed within the
main menu bar on Mac OS systems.

For more details on working with and scripting menus in general, see the section Working
with Menus in the chapter Programming a User Interface.

110

Figure 40 – Menu Controls

The cascade menu is a special type of control that is only used when building a stack
panel menu. Sub-menu items can be created in list-based content menus without using
this object.

Figure 41 – Tab Menu on Windows

The tabbed panel is a type of menu in Revolution. You can specify a list of tabs to be
displayed and receive a menuPick message when the user clicks on a tab in the same
way as other menus. There are two common techniques for implementing a tabbed
interface: group the objects for each tab together and show or hide the appropriate group
when you change tab; or place the tab object into a group which is then placed as a
background on multiple cards.

4.2.28 Other Controls
Scroll bars can be used as a progress bar to display a value, a slider to allow the user to
choose a value, or to scroll objects. (Note that you don’t need to use a scrollbar object
with fields or groups as these can display a built-in scroll bar.) Sliders and scrollbars can
be displayed both horizontally and vertically – to display vertically, resize so that the
height is greater than the width.

111

Figure 42 – Scrollbars

4.3 Using the Menu Builder
The menu builder allows you to create and edit a standard menu bar that will work
correctly regardless of the platform you intend to deploy on. On Windows and Unix,
menus built with the Menu Builder will appear in the top of the window. On Mac OS
they will be displayed in the main menu bar. It is also possible to generate a menu bar by
script. For more details, see the section on Programming a User Interface.

Choose Tools -> Menu Builder to open the Menu Builder.

Figure 43 – Menu Builder

Preview This option allows you to preview your menu bar in the main menu

bar. It only applies on Mac OS systems where the option Set as
Menu Bar on Mac OS has been turned on.

112

Important: To bring back the Revolution development menu bar when working with a
stack that has this option turned on, click on a Revolution IDE window such as the Tool
bar.

Menu bar settings This area specifies the main settings for your menu bar. Use the
New button to create a new menu bar in the current top most
editable stack. Enter the name for your menu bar in the text area.
Delete will permanently delete your menu bar. Use the Edit button
to load an existing menu bar from the top most editable stack to edit
in the area below.

Menu edit area Select a menu to work on from the scrolling list. At a minimum
your application should have a File, Edit and Help menu. These
menus are created for you automatically when you create a new
menu bar. To create a new menu, move the orange divider bar to
the position in the menu bar you want to create the new menu, and
press New Menu. Disable the currently selected menu by checking
Disabled. Choose the keyboard shortcut (the portion of the name
that is underlined), using the Mnemonic popup menu (Windows,
Linux & Unix only). To move a menu in the list, select it then press
the up or down arrows (to the right of the name area).

Menu content
area

Select a menu item to work on from the scrolling list. To create a
new menu item, move the orange divider bar to the position in the
menu bar you want to create the new menu, and press New Item.
Disable the currently selected item checking Disabled. Choose the
keyboard shortcut (the portion of the name that is underlined, for
use when the menu is open), using the Mnemonic popup menu
(Windows, Linux & Unix only). To move a menu item up or down
the list, select it then click the up or down arrows (to the right of
the name area). To move items into a submenu, click the Right
arrow, or click the Left arrow to move a submenu item back into the
main menu bar. To insert a divider, position the orange divider bar
where you want the divider, the click the blue divider button (top
right). To make the menu item a Checkbox or Diamond option,
choose the appropriate option from the Mark popup menu. To
create a control key shortcut for the item, click the Shortcut check
box and enter the letter you want to use for the shortcut. To
understand the symbols that are created next to the menu items, see
the section on Menu Bars within the chapter on Programming a
User Interface.

Scripting Edit Script opens the Script Editor for the currently selected menu.
Auto Script places a blank script within the currently selected
button with spaces to insert actions for each of the menu items
within that item. We recommend you press Auto Script before
pressing Edit Script when you create a menu.

113

4.4 Using the Geometry Manager
Use the Geometry Manager to specify how objects should be scaled and positioned when
the user resizes the window.

Figure 44 – The Geometry Manager

Scale or Position
Selector

Choose whether you want the control to be scaled or positioned
when the stack is resized. Scaling will change the dimensions of the
control as the stack resizes. Positioning will move the control, it
does not change its dimensions. Note that it is possible to scale an
object in the horizontal plane and have it position in the vertical.
Select Scale then set the options for one axis in the Linking area.
Then select Position and set the options for the other axis. If you set
options in both the Scale and Position modes for both axis, the
Scaling options will be ignored.

Linking area Use the linking area to specify the relationship between the control

114

and the window, or other controls as the stack is resized. In Scaling
mode you can link each edge of the object to the window or another
object. In positioning mode, you can only link the X and Y axis of
an object. Click the gray bars to create a link. A single click results
in an absolute link, a second click will create a relative link. An
absolute link will keep the object the current number of pixels away
from what it is being linked to. For example, if you link the right
edge to the edge of the window and the edge is currently 10 pixels
away from the edge of the window, whenever the stack is resized
the edge will remain exactly 10 pixels away. However if you use a
relative link the distance will be calculated as a percentage of the
total width of the card. The object will remain the same percentage
away from the edge of the card, the exact number of pixels will
vary.
When linking to another control, be sure to link to a control that is
moved relative to the window, or by a script (e.g. in a
resizeStack handler).
When using the Geometry Manager with an existing
resizeStack handler, be sure to pass the resizeStack
message, otherwise the Geometry Manager will not be able to take
effect.
To force the Geometry to manually update, call
revUpdateGeometry.

Tip: You can use the Geometry Manager to scale objects with a "divider" bar. Create
and script the bar to move, then link the edges of the controls to it, then call
revUpdateGeometry each time it moves to have the objects scale automatically.

Clipping settings Turn on Prevent Object Clipping Text to prevent the control getting

too small to display its label when the window is resized. If the
control is a field, you can also turn on the option to display scroll
bars if the text within the field does not fit.

Limit settings Allows you to set the minimum and maximum possible widths and
heights for the object.

Remove All Removes all Geometry settings from the control. Use this option if
the settings you have applied do not give the desired effect and you
want to start over.

The Geometry Card Settings options can be accessed from within the Card Property
Inspector. Use these options to determine how Geometry is applied to the controls within
the current card.

115

Figure 45 – Geometry Card Settings

Add to cards
virtual width or
height

Use this option to implement a layout that allows a section of
optional controls to be folded out. The Geometry manager will
ignore the extra height or width pixels specified in this area,
resizing objects as if that area of the card has not been "expanded".
Normally these values are set by script as the window is resized to
fold out additional controls. To set these properties by script, set the
cREVGeneral["virtualWidth"] or
cREVGeneral["virtualHeight"] card properties.

Update before
opening card

Causes the objects to be resized when navigating to the card if the
window has been resized while on another card. This option is not
needed if the controls are contained within a background that has
already been correctly resized to the current window dimensions.

4.5 Using Property Profiles
Use Property Profiles to store different sets of properties in a single object. Property
Profiles can be used to provide localized versions of your application, or different themes
or skins.

116

Figure 46 – Property Profiles

Create, delete or
set Profiles

The icons from left to right allow you to duplicate, delete orcreate a
new profile for the currently selected object. The Set all button
allows you to set all the objects on the current card or stack to the
profile currently selected in Profile selector area.
When creating a new profile, ensure you choose a name that is
valid as a variable and not a reserved Revolution word. Use
consistent names to allow you to create a theme or language and set
all the objects in your card or stack to the same profile.

When you create a new profile, Revolution automatically switches
the object to use that profile. There are two ways to include new
property settings in a profile: by using the property inspector to
specify the properties you want to include, and by changing the
properties directly while the profile is active.

If you make changes to the properties of the object, the profile
editor will track the changes and save those into the current Profile.
Any properties that have not been set for the current profile will be
inherited from the Master profile. The profiles system supports all
common object properties including styled text and Geometry
information. However it does not store properties that duplicate
each other (e.g. only the rect value will be stored, not the object’s
left, right or other location properties). Scripts and custom
properties are also not stored by the profile editor. You can
however write scripts that first check what profile is in use on the

117

object before taking an action by checking the revProfile
property of the object.
You can set profiles by script by setting the revProfile
property. To set the entire card, stack or stack file, use
revSetcardProfile, revSetStackProfile or
revSetStackFileProfile commands respectively. To turn
on the storage of new properties in the current profile and thus
change profiles more rapidly, toggle the
gRevProfileReadOnly global.

Profile selector Select a profile to change all the object’s properties to the values
contained in that profile. Click the currently selected profile to
update the list of properties stored for it.

Profiles
properties

Displays a list of all properties that have been changed in the
currently selected profile, and thus have a value unique to this
profile. Select a property to see its contents. Press the plus icon to
manually add a new property to the current profile. Delete the
property from the current profile using the delete icon.

Property contents View and edit the contents of the currently selected property
associated with the currently selected profile.

The Add Property dialog box lists all applicable properties, but the
Property Profiles pane automatically eliminates redundant
properties and property synonyms. For example, if you add the
backgroundColor and foregroundColor properties, the
Property Profiles pane displays the colors property instead the
next time you re-open the property inspector. This is because the
colors property contains all eight color settings of an object, so
it's not necessary to store the individual color properties once
they've been set.

To easily copy a property value from another profile, click the
"Copy" button in the bottom section and choose the profile you
want to copy from.

For more details on working with Property Profiles, see the section on Property Profiles
in the chapter Programming a User Interface.

4.6 10 Tips for Good User Interface Design
If you are creating a simple utility for yourself, a handful of other people, or as a research
project, the design of the interface is less important. However, if you are creating
software for a wide group of end users, you should take time to carefully design the user
interface. As computer software has become more mature over the past couple of
decades, user expectations of what their software experience should be have increased.
Increasingly, users expect clear, uncluttered interfaces which are visually appealing.
Getting this right is part art and part science. It is beyond the scope of this manual to give
detailed instruction on this topic. There are many good books and resources devoted to

118

this evolving area. However we thought it would be useful to give you our top 10 tips for
good user interface design.

Less is more
Don't use three buttons where one would do. The fewer choices a user has to make the
easier your software will be to learn.

Design to communicate
Good design supports whatever you are trying to communicate.

Get the defaults right
Providing preferences is great for power users. Just remember that the majority of your
users will never adjust the defaults. So focus on getting the default behaviors right before
you start to add preferences.

Layout
A clean consistent layout helps to convey a feeling of professionalism and make your
software useable. If you have used a button that is 20 pixels wide in one part of your
interface then use the same size of button elsewhere. Line your objects up carefully.

Screen resolution
Consider what screen resolution you are designing for and whether or not you want your
interface to be resizable early on. This decision will have a big impact on your design.

Consider the program flow
If you program performs a complex task with many options, consider creating a wizard
style interface which guides the user step by step through the task. That way they are
never faced with a screen covered with dozens of options and no idea what to do next.

Test it on real users
Bring in a group of people and watch them use the program. Don't interfere or help them
out, just get them going and take notes. If you don't have a budget for expensive user
testing labs, this process can be as simple as gathering a group of students and offering
them free pizza. You'll get a ton of useful feedback that will really help make your
program easy to use.

Don't use square wheels
The various types of widget and control type available have built up a meaning for users
over years of use. Don't use something that has a well understood function to perform a
different sort of task. If you need a widget that does something new, build something
new.

Skinning
If you're producing a custom skin for your application, a good rule of thumb is either
make it entirely custom or use standard OS widgets. An OS native button can look very
out of place in the middle of a carefully designed custom skin.

119

HCI guidelines for the three main platforms
Each of the platforms that Revolution supports has its own set of User Interface
Guidelines. We recommend you take time to familiarize yourself with them.

Apple Human Interface Guidelines:
http://developer.apple.com/documentation/UserExperience/Conceptual/OSXHIGuideline
s/XHIGIntro/chapter_1_section_1.html

Windows Vista User Experience Guidelines:
http://msdn2.microsoft.com/en-us/library/aa511258.aspx

GNOME Human Interface Guidelines 2.0:
http://library.gnome.org/devel/hig-book/stable/

KDE Human Interface Guidelines:
http://wiki.openusability.org/guidelines/index.php/Main_Page

120

Chapter 5 Writing Revolution Code
Writing code is how you give your application functionality. Writing the right code
means your application will do what you want it to do. Fortunately, Revolution’s built in
high level language, makes this task easy. The English-like syntax is easy to read and
write. This chapter walks you through writing Revolution.

121

5.1 The Structure of a Script

5.1.1 What is a Script
Every object in Revolution can contain a script, which tells it what to do. You edit the
script of an object using the Script Editor (see The Script Editor). A script is organized
into a set of individual message handlers, each one of which can respond to a different
event (see Messages) or contain a specific piece of functionality. Scripts can send
messages to each other. In a well organized application, a script will regularly pass data
between different types of message handlers which have been grouped and organized to
deliver functionality, with a minimum amount of duplication. A script can contain
sections of code that is commented – remarks that are intended for a human to read and
are not executed. Technically a script is simply another object property, so one script can
set another – within certain limits.

5.1.2 The Types of Handler
A handler is a complete section of code. Each handler can be executed independently.
There are four types of handler: commands (message handlers), functions, getProp
handlers and setProp handlers.

5.1.3 Message Handlers
Each message handler begins with the on control structure followed by the name of the
message that this handler responds to. The handler ends with the end control structure
and the name of the message. Message handlers look like this:

on mouseUp
 beep
end mouseUp

A message handler is executed when the object whose script contains the handler
receives the message. This example handler responds to the mouseUp message (see
Messages).

5.1.4 Function Handlers
Each function handler begins with the function control structure followed by the
name of the function that this handler computes. The handler ends with the end control
structure and the name of the function. Function handlers are typically called by another
handler and return a value using the return control structure. Function handlers look
like this:

function currentDay
 return item 1 of the long date
end currentDay

122

A function handler is executed when a handler in the same script (or one in an object
lower in the message hierarchy) calls the function. This example handler returns today's
name.

5.1.5 GetProp Handlers
Each getProp handler begins with the getProp control structure followed by the name
of the custom property that this handler corresponds to. The handler ends with the end
control structure and the name of the property. getProp handlers look like this:

getProp myCustomProperty
 return the scroll of me + 20
end myCustomProperty

A getProp handler is executed whenever the value of the corresponding custom
property is requested by a Revolution statement. You can write a getProp handler for
any custom property of the object or another object lower in the message hierarchy. For
more information, see the section on Custom Properties.

5.1.6 SetProp Handlers
Each setProp handler begins with the setProp control structure followed by the name
of the custom property that this handler corresponds to. The handler ends with the end
control structure and the name of the property. setProp handlers look like this:

setProp myCustomProperty newSetting
 set the hilite of me to true
 pass myCustomProperty
end myCustomProperty

A setProp handler is executed whenever the value of the corresponding custom property
is changed by the set command. You can write a setProp handler for any custom
property of the object or another object lower in the object hierarchy. For more
information, see the section on Custom Properties.

5.1.7 Comments
Comments are remarks that are intended for a human to read and are not executed. For
some recommendations on what sort of comments to include and when, see the section
on Good Design Recommendations.Comments can be placed either in a handler, or
outside any handler.

Any line (or portion of a line) that starts with two dashes (--) or a hash mark (#) is a
comment. Placing these characters at the beginning of a line is called "commenting out"
the line.

on mouseUp -- this part is a comment
 beep
 -- and this is a comment too

123

end mouseUp

You can temporarily remove a statement, or even an entire handler, by commenting it
out. To comment out several lines at once, select them and choose Script -> Comment.

Since comments are not executed, you can place them anywhere in a script--inside a
handler or outside all handlers.

Comments that start with -- or # only extend to the end of the line. To create a multiple-
line comment, or block comment, surround it with /* and */ instead:

on openCard
 /* This is a multiple-line comment that might
 contain extensive information about this handler,
 such as the author's name, a description, or the
 date the handler was last changed. */
 show image "My Image"
 pass openCard /* You can also make one-line comments */
end openCard

Block comments are handy when you want to temporarily remove a section of code while
debugging a handler. You can place the characters "/*" at the start of the section, and "*/"
at the end, to prevent the section from being executed.

5.1.8 Compiling a Script
A script is compiled when you change the script either by clicking Apply in the script
editor (or, if altering a script from another script, using the set command). During
compilation, the entire script is analyzed.

If a compile error is found when a script is being compiled, the entire script is unavailable
for execution until the error is corrected and the script is re-compiled. This applies only to
compile errors. If an execution error occurs during the execution of a handler, it does not
affect the ability to use other handlers in the same script. For more information on dealing
with errors, see the section on Debugging.

You cannot change a script while a handler in it is executing, because what is executed is
the compiled version, not the text in the script property.

5.1.9 Summary
Each object has a script, which can be empty or can contain one or more Revolution
handlers. You change a script using the script editor, or by setting the object's script
property.

A script can contain four kinds of handlers: commands, function handlers, setProp
handlers, and getProp handlers.

124

A comment is a part of the script that is not executed. Comments start with -- or #.

If a script contains a compile error, none of its handlers can be used until the error is
fixed.

5.2 Events
Revolution is based upon events. Every action a script takes is triggered by an event,
which is sent in the form of a message.

5.2.1 What Causes Messages to be Sent
Messages are sent by events. Events include user actions (such as typing a key or clicking
the mouse button) and program actions (such as completing a file download or quitting
the application). Revolution watches for events and sends a message to the appropriate
object when an event occurs.

Note: When a tool other than the Browse tool is active, the development environment
traps the built-in messages that are normally sent when clicking (such as mouseDown
and mouseUp). This is so that, for example, you can use the Pointer tool to select and
move a button without triggering its mouseUp handler.

These messages are referred to as built-in messages, and include mouseDown,
mouseUp, keyDown, openCard, and all the other messages described in the
Revolution Dictionary.

Revolution also sends a message whenever a handler executes a custom command (see
Sending Messages). However, built-in commands are executed directly by the engine and
don't result in sending a message. Similarly, Revolution sends a function call whenever a
handler calls a custom function, a setProp trigger whenever a handler sets a custom
property, and a getProp call whenever a handler gets the value of a custom property.

5.2.2 Responding to Events
To respond to a message, you write a message handler with the same name as the
message. For example, to respond to a keyDown message sent to a field (which is sent
when the user presses a key while the insertion point is in the field), place a keyDown
handler in the field's script:

on keyDown theKey -- responds to keyDown message
 if theKey is a number then beep
end keyDown

125

5.3 The Message Path
The message path is the set of rules that determine which objects, in which order, have
the opportunity to respond to a message. The message path is based on the object
hierarchy.

5.3.1 The Object Hierarchy
Each Revolution object is part of another object, of a different object type. For example,
each card is part of a stack, each grouped control is part of a group, and so on. This object
hierarchy defines the ownership and inheritance relationship between objects.

Font, color and pattern properties are inherited from the object’s owner if they are not set.
This means that if you set the textFont of a stack, all the objects within that stack that
do not have their textFont property set will use that text font.

5.3.2 The Message Path
When a message is sent to an object, it is often handled directly by a message handler in
that object. However if no handler is present, the message will continue along a path until
it finds a message handler that can respond to it. This makes it possible to group similar
functionality together at different levels within your application. This behavior applies
both to event messages sent as a result of a user action, and custom messages sent by
script. It is therefore possible to write libraries of common functions.

The object hierarchy is closely related to the path that a message travels on. In most
cases, when an object passes a message on, the message goes to the object's owner in the
object hierarchy.

The Message Path is detailed in the figure below.

126

Figure 47 – The Message Path

For example, suppose the user clicks a button in a main stack, causing Revolution to send
a mouseUp message to the button. If the button's script does not contain a handler for the
mouseUp message, the message is passed along to the card the button is on. If the card's
script contains a mouseUp handler, the handler is executed. But if the card does not
handle the mouseUp message, it is passed on to the card's stack. If the stack script
contains a mouseUp handler, the handler is executed. But if the stack does not handle the
mouseUp message, it is passed on to the engine.

The engine is the end of the message path, and if a message reaches it, the engine takes
any default action (e.g. inserting a character into a field or highlighting a button), then
throws the message away.

If a message corresponding to a custom command or a custom function call reaches the
end of the message path without finding a handler, instead of being thrown away, it
causes an execution error.

127

Note: In order to be considered a background (as per the Message Path diagram above),
a group must have its backgroundBehavior property is set to true.

Caution: If a stack's dynamicPaths property is set to true, message handlers in that
stack use HyperCard's dynamic path behavior: if a handler uses the goor find
command to go to a card other than the original card, that destination card's message path
is inserted into the message path as long as the handler is on that card. The
dynamicPaths property is provided for compatibility with imported HyperCard stacks,
and is normally set to false, but you may encounter this behavior when working with a
stack that was originally created in HyperCard.

5.3.3 The Message Target
The object that a message was originally sent to is called the message's target. You can
get the target from within any handler in the message path by using the target
function.

Tip: To get the name of the object whose script is currently executing, use the me
keyword.

For example, if you click a button (causing a mouseUp message to be sent), and the
button's script contains a mouseUp handler, then the target function returns the button's
name. However, if the button doesn't handle the mouseUp message, it's passed to the
card, and if the card has a mouseUp handler, it is executed in response to the message. In
this case, the card's script is executing, but the target is not the card--it's the button that
was originally clicked, because Revolution sent the mouseUpmessage to the button.

5.3.4 Handlers with the Same Name
If two different objects in the message path each have a handler with the same name, the
message is handled by the first object that receives it and has a handler for it.

For example, suppose that a button's script includes a mouseUp handler, and so does the
stack script. If you click the button, a mouseUp message is sent to the button. Because
the button's script has a mouseUp handler, the button handles the message, and it isn't
passed any further. The message is never sent to the stack script, so for this click event,
the stack script's mouseUp handler is not executed.

128

Note: If an object's script has more than one handler with the same name, the first one is
executed when the object receives the corresponding message. Other handlers in the
same object's script with the same name are never executed.

5.3.5 Trapping Messages
When an object receives a message and a handler for that message is found, the handler is
executed. Normally, a message that's been handled does not go any further along the
message path. Its purpose having been served, it disappears. Such a message is said to
have been trapped by the handler.

If you want to prevent a message from being passed further along the message path, but
don't want to do anything with it, an empty handler for the message will block it from
being passed on. This example prevents the mouseDown message from being acted on
by the object the empty handler is in, as well as any objects below it in the object
hierarchy:

on mouseDown
end mouseDown

You can use the same technique to block custom function calls, setProp triggers, and
getProp calls.

5.3.6 Blocking System Messages
You can block system messages – for example those sent when you navigate to another
card – from being sent while a handler is executing by setting the lockMessages
property to true.

For example, if the handler opens another stack, Revolution normally sends openCard
and openStack messages to the stack. If the stack contains handlers for these messages
that would cause unwanted behavior during this operation, you can use the
lockmessages command before going to the stack in order to temporarily block these
messages. When the handler finishes executing, the lockMessages property is
automatically reset to its default value of false, and normal sending of messages resumes.

Tip: To block navigation messages while testing or debugging a stack, press Suppress
Messages on the toolbar or choose Development -> Suppress Messages.

5.3.7 Passing a Message to the Next Object
To let a message pass further along the message path, use the pass control structure.
The pass control structure stops the current handler and sends the message on to the
next object in the message path, just as though the object hadn't contained a handler for
the message:

129

on openCard
 doSpecialSetupForThisCard
 pass openCard -- let stack get the message too
end openCard

5.3.8 Selectively Trapping or Passing Messages
Some built-in messages, such as keyDown, trigger an action, so trapping the message
prevents the action from being performed at all. The following example passes the
keyDown message only if the character typed is a number:

on keyDown theKey
 if theKey is a number then pass keyDown
end keyDown

If you place this handler in a field's script, it allows the user to enter numbers, but any
other keystrokes are trapped by the keyDown handler and not allowed to pass.

A similar principle applies to setProp triggers. If a setProp handler does not pass
the setProp trigger, the custom property is not set.

5.3.9 Groups, Backgrounds & The Message Path
As you can see from the diagram above a group's position in the message path depends
on whether the "Behave as Background" check box has been set (by script or using the
backgroundBehavior property).

If background behavior is false, the group is in the message path for all controls it owns,
but is not in the message path of any other object.

If the background behavior is true, the group is also in the message path for any cards it
is placed on. If you send a message to a card control, the message passes through the
control, then the card, then any background groups on the card in order of number, then
the stack.

Since a group owns any controls that are part of the group, if you send a message to a
control within a group, the group is in the message path for its own controls, regardless of
whether it’s background behavior is true or false. If a group has already received a
message because it was originally sent to one of the controls in the group, the message is
not sent through the group again after the card has handled it.

Tip: If you want a handler in a group's script to affect only the objects in the group, place
the following statement at the beginning of the handler:

Tip: if the owner of the target is not me then pass message

Tip:

130

Tip: This filters out any objects that are not part of the group.

5.4 Commands and Functions
You use commands and functions to perform the actions of your application. Commands
instruct the application to do something – such as play a movie, display a window, or
change a property. Functions compute a value – different functions might add a column
of numbers, or get the fifteenth line of a certain file, or find out whether a key is being
pressed.

5.4.1 Using Built-in Commands and functions
Revolution has over one hundred and fifty built-in commands, and over two hundred
built-in functions, all of which are documented in the Revolution Dictionary.

Commands
A command is an instruction to Revolution to do something. A command is placed at the
start of a statement (either the start of a line or after a control structure such as "then").
The command is followed by any parameters that specify the details of what the
command is to do.

Here are some examples of how built-in commands are used in statements:

go next card -- go command
beep -- beep command
set the hilite of me to true -- set command

Functions
A function call is a request to Revolution for information. A function is stated using the
name of the function, followed by opening and closing brackets that may contain any
parameters that specify the details of what the function is to act on.

When you use a function in a statement, Revolution calls the function to compute the
specified information, then substitutes that information in the script as if the script had
originally written that information in place of the function call. The information returned
can therefore be put into a variable or other container by using the put command in front
of a function.

Here's an example of how a function is used:

put round(22.3) into field "Number"

When this statement is executed, Revolution calls the round function. When you round
off 22.3, the resulting number is 22, so the statement puts the number 22 into the field.

131

The number you're rounding off is placed in parentheses after the round function's
name. This number is called the function's parameter. A function can have one parameter,
or none, or several. The parameters are enclosed in parentheses and, if there's more than
one, they're separated with commas. Here are some examples:

put date() into myVariable -- date function, no parameters
put length("hello") into me -- length function, 1 parameter
get average(10,2,4) -- average function, 3 parameters

Important: A function call, by itself, is not a complete statement. You need to use a
function call in conjunction with a command or control structure. (In the first example
above, the round function is used with the put command.)

Writing function calls with the "the" form
If a built-in function has no parameters or one parameter, it can be written in a different
form, with no parentheses:

put the date into myVariable -- date function
put the length of "hello" into me -- length function

If the function has no parameters, this form is written as the functionName. If it
has one parameter, this form is written as the functionName of parameter.

The "the" form works the same way as the "()" form shown above, and you can use the
two forms interchangeably for built-in functions with fewer than two parameters. The
Revolution Dictionary entry for each built-in function shows how to write both forms.

Important: You can use the "the" form for built-in functions, but not for custom
functions that you write. Writing custom functions is discussed later.

5.4.2 Custom Commands and Functions
You use custom commands and custom functions the same way as any other command or
function.

Using custom commands
You can execute a custom command simply by typing the name of the command you
want to send.

myCommand

You respond to a custom command's message in the same way, by writing a message
handler with the name of the command:

132

on myCommand -- a custom command
 beep 3
 go next card
 add 1 to field "Card Number"
end myCommand

If you don't specify an object, the message is sent to the object whose script is being
executed, and then passes up the message hierarchy as normal.

Like a built-in command, a custom command is an instruction to Revolution to do
something. You can include parameters with a custom command by passing them after
the name:

checkForConnection "ftp://ftp.example.org"
makePrefsFile fileLoc,field "Preferences"

Built-in commands can have very flexible syntax:

go to card 3 of stack "Dialogs" as modal
group image "Help Icon" and field "Help Text"
hide button ID 22 with visual effect dissolve very fast

However, the syntax of custom commands is more limited. A custom command can have
several parameters, and if there is more than one, they are separated by commas:

libURLDownloadToFile myFile,newPath,"downloadComplete"
revExecuteSQL myDatabaseID,field "Query","*b" & "myvar"

But custom commands cannot use words like "and" and "to" to join parts of the command
together, the way built-in commands can. Because of this, custom commands cannot be
as English-like as built-in commands can be.

Using custom functions
When you use the custom function "fileHeader" in a statement, the function handler is
executed, and the function call is replaced by the value in the return statement. This
example shows how the function can be used:

put fileHeader(it) into myFileHeaderVar

And the corresponding custom function:

function fileHeader theFile
 put char 1 to 8 of URL ("file:" & theFile) into tempVar
 put binaryDecode("h*",tempVar) into tempVar
 return tempVar
end fileHeader

133

Like a built-in function or library function, a custom function call is a request for
information. Here are a few examples showing the use of made-up custom functions:

get formattedPath("/Disk/Folder/File.txt")
put summaryText(field "Input") into field "Summary"
if handlerNames(myScript, "getProp") is empty then beep

Custom functions don't have a "the" form, and are always written with parentheses
following the function name. If the function has parameters, they are placed inside the
parentheses, separated by commas. If the function doesn't have parameters, the
parentheses are empty.

5.4.3 Passing Parameters
A value that you pass from one handler to another is called a parameter.

In the example below, the following statement sends the "alertUser" message with a
parameter:

alertUser "You clicked a button!"

The parameter "You clicked a button!" is passed to the "alertUser" handler, which
accepts the parameter and places it in a parameter variable called "theMessage". The
"alertUser" handler can then use the parameter in its statements:

on alertUser theMessage
 beep
 answer theMessage -- uses the parameter "theMessage"
end alertUser

5.4.4 Passing Multiple Parameters
If a statement passes more than one parameter, the parameters are separated by commas.
The following example has two parameters, "theMessage" and "numberOfBeeps":

on seriouslyBugUser theMessage,numberOfBeeps
 beep numberOfBeeps
 answer theMessage
end seriouslyBugUser

To use this custom command, you call it like this:

seriouslyBugUser "Hello",5

When the "seriouslyBugUser" handler is executed with the statement above, the
theMessage parameter is "Hello", and the numberOfBeeps parameter is 5.

134

5.4.5 Parameter Variables
In the example above, "theMessage" and "numberOfBeeps" are the parameter variables.
You declare parameter variables in the first line of a handler. When the handler begins
executing, the values you passed are placed in the parameter variables. You can use
parameter variables the same way as ordinary variables: you can put data into them, use
them in expressions, and so on.

Parameter variables are local variables, so they go out of existence as soon as the handler
stops executing.

Parameter variable names
You can give a parameter any name that's a legal variable name. The names of variables
must consist of a single word and may contain any combination of letters, digits, and
underscores (_). The first character must be either a letter or an underscore.

It is not the name, but the order of parameters that is significant.

Empty parameters
A handler can have any number of parameter variables regardless of the number of
parameters passed to it. If there are more parameter variables than there are values to put
in them, the remaining parameter variables are left empty. Consider the following
handler, which has three parameter variables:

on processOrder itemName,itemSize,numberOfItems
 put itemName into field "Name"
 put itemSize into field "Size"
 if numberOfItems is empty then put 1 into field "Number"
 else put numberOfItems into field "Number"
end processOrder

The following statement places an order for one sweater:

processOrder "sweater","large"

The statement only passes two parameters, while the "processOrder" handler has three
parameter variables, so the third parameter variable, "numberOfItems", is empty. Because
the handler provides for the possibility that "numberOfItems" is empty, you can pass
either two or three parameters to this handler.

Setting a default value for a parameter
To use a default value for a parameter, you check whether the parameter is empty. If it is,
then no value has been passed, and you can simply put the desired default into the
parameter, as in the following example:

logData theData,theFilePath
 if theFilePath is empty then

135

 put "logfile" into theFilePath
 end if
 put theData into URL ("file:" & theFilePath)
end logData

The "logData" handler puts data into a file, whose name and location you specify in the
second parameter. If you only provide one parameter, the handler uses the filename
"logfile" as the default value, and logs the data to that file:

logData field 1,"/Disk/Folder/data.txt" -- specifies a file
logData myVariable-- doesn't specify a file, uses "logfile"

The first statement above specifies the second parameter, so it doesn't use the default
value. The second statement only specifies one parameter, so the data will be placed in
"logfile" by default.

5.4.6 Implicit Parameters
If a statement passes more parameters than the receiving handler has parameter variables
to hold them, the receiving handler can access the extra parameters with the param
function:

function product firstFactor,secondFactor
 put firstFactor * secondFactor into theProduct
 if the paramCount > 2 then
 repeat with x = 3 to the paramCount
 multiply theProduct by param(x)
 end repeat
 end if
 return theProduct
end product

The function above assumes that two parameters will be passed to be multiplied, but can
multiply more numbers by using the param function to access parameters beyond the
first two. The following statement uses the "product" custom function above to multiply
four numbers together:

answer product(22,10,3,7)

When the "product" handler executes, the first two parameters – 22 and 10 – are placed in
the parameter variables "firstFactor" and "secondFactor". The third parameter, 3, is
accessed with the expression param(3), and the fourth parameter, 7, is accessed with
the expression param(4).

5.4.7 Passing Parameters by Reference
Normally, if you pass a variable name as a parameter, that variable is not changed by
anything the called handler does. This is because the variable itself is not passed, only its

136

contents. Passing parameters in this way is called "passing by value" because the
variable's value--not the variable itself--is what is passed.

If the name of a parameter variable is preceded with the @ character, that parameter's
value is a variable name, rather than the value in the variable. Changing the parameter
variable in the called handler changes the value of the variable in the calling handler. This
way of passing parameters is called "passing by reference", because you pass a reference
to the variable itself instead of just its value.

For example, the following handler takes a parameter and adds 1 to it:

on setVariable @incomingVar
 add 1 to incomingVar
end setVariable

The following handler calls the "setVariable" handler above:

on mouseUp
 put 8 into someVariable
 setVariable someVariable-- call by reference
 answer "someVariable is now:" && someVariable
end mouseUp

Executing this mouseUp handler displays a dialog box that says "someVariable is now:
9". This is because, since "someVariable" was passed by reference to the "setVariable"
handler, its value was changed when "setVariable" added 1 to the corresponding
parameter variable.

You can pass parameters by reference to any custom function or custom command,
simply by preceding the parameter name with the @ character in the first line of the
handler, as in the "setVariable" example handler above. Do not use the @ character when
referring to the parameter elsewhere in the handler.

Note: If a parameter is passed by reference, you can pass only variable names for that
parameter. You cannot pass string literals or expressions using other containers such as
fields. Trying to use the "setVariable" command described above using the following
parameters will cause an execution error:

setVariable 2-- can't pass a literalbyreference
setVariable field 2 -- can't pass a container
setVariable line 1 of someVariable -- can't pass a chunk

Empty parameters
If a handler defines a parameter as being passed by reference, you must include that
parameter when calling the handler. Omitting it will cause an execution error.

137

5.4.8 Returning Values
Once a function handler has calculated a value, it needs a way to send the result back to
the handler that called the function. And if an error occurs during a message handler, it
needs a way to send an error message back to the calling handler.

The return control structure is used within a function handler to pass the resulting
value back to the calling handler. The returned value is substituted for the function call in
the calling statement, just like the value of a built-in function. Take another look at the
example from above:

function expanded theString
 repeat for each character nextChar in theString
 put nextChar & space after expandedString
 end repeat
 return char 1 to -2 of expandedString
end expanded

In the custom function example above, thereturn control structure sends the spaced-out
string back to the mouseUp handler that called the "expanded" function.

Note: The return control structure stops the handler, so it's usually the last line in the
handler.

5.4.9 Returning an Error from a Message Handler
When used in a message handler, the return control structure serves a slightly different
purpose: it returns an error message to the calling handler.

When used in a message handler, the return control structure sets the result
function for the calling handler. If you want to return an error message to the calling
handler, use the return control structure within the message handler.

Here's an example of a message handler that displays a dialog box:

on echoAMessage
 ask "What do you want to show?"
 if it is empty then return "No message!"
 else answer it
end echoAMessage

This handler asks the user to enter a message, then displays that message in a dialog box.
If the user doesn't enter anything (or clicks Cancel), the handler sends an error message
back to the calling handler. A handler that uses the "echoAMessage" custom command
can check the result function to see whether the command successfully displayed a
message:

138

on mouseUp
 echoAMessage
 if the result is empty then beep
end mouseUp

Note: The result function is also set by many built-in commands in case of an error. If
you check the result in a handler, the value belongs to whatever command – built-in or
custom – that set it last, so if you're going to check the result, be sure to do so right after
the command whose success you want to check.

5.4.10 Summary
In this topic, you have learned that:

A command instructs the application to do something, while a function requests the
application to compute a value.

You create a custom command or custom function by writing a handler for it.

Values that you pass to a handler are called parameters.

To pass a parameter by reference, you precede its name with an @ sign in the first line of
the handler.

When used in a function handler, the return control structure returns a value.

When used in a message handler, the return control structure returns an error message
that can be accessed with the result function.

5.5 Variables
A variable is a place to store data that you create, which has no on-screen representation.
Variables can hold any data you want to put into them. One way to think of a variable is
as a box with a name on it. You can put anything you want into the box, and take it out
later, by simply providing the variable's name:

put 1 into thisThing -- a variable named "thisThing"
put thisThing into field ID 234
put "Hello Again!" into line 2 of thisThing

But unlike some other types of containers, variables are non-permanent and aren't saved
with the stack. Instead, variables are automatically deleted either when their handler is
finished running or when you quit the application (depending on the variable's scope).
You can also use the delete variable command to delete a variable. When a variable is

139

deleted, not only the content of the variable disappears, but also the variable itself--the
"box".

Tip: To save a variable's value, set a custom property of the stack to the value of the
variable in your applications closeStackRequest or shutDown handler. To
restore the variable, put the custom property into a variable in the application's startUp
or openStack handler.

5.5.1 Variable Scope
The scope of a variable is the part of the application where the variable can be used. If
you refer to a variable in a handler that's outside the variable's scope, you'll get either an
execution error or an unexpected result.

There are three levels of variable scope: local, scriptlocal, and global. Every
variable is one of these three types. The difference between these scopes is in where they
can be used and how long their value lasts.

5.5.2 Local Variables
A local variable can be used only in the handler that creates it. Once the handler finishes
executing, the variable is deleted. The next time you execute the handler, the variable
starts from scratch: it does not retain what you put into it the last time the handler was
executed.

To create a local variable, you simply put something into it. If you use the put command
with a variable name that does not yet exist, the variable is automatically created as a
local variable:

put true into myNewVar -- creates variable named "myNewVar"

Tip: While you can use almost any word that isn’t a Revolution language word – also
known as a reserved word – for a variable name, it will help you greatly if you get into
the habit of naming variables logically and consistently. For details of what names are
allowed for variables, see the section on Variable Names below. For some
recommendations on naming variables, see the section on Tips for Writing Good Code,
below.

Alternatively, you can create a local variable explicitly by declaring it using the local
command inside a handler:

Important: If you use a local variable in one handler, and that handler calls another
handler, you can't use the local variable in the second handler. If you use a variable with

140

the same name, Revolution creates a second variable that is local to the second handler.
But the two local variables don't affect each other, because they're in different handlers.

In the following example, the two handlers each have a local variable named "myVar",
but they are different local variables because they're in different handlers, and changing
one does not affect the other:

on mouseUp
 put 1 into myVar -- creates a local variable
 doCalledHandler
 answer myVar -- displays "1", not "2"
end mouseUp

 on doCalledHandler
 put 2 into myVar
 -- creates a different variable with the same name
end doCalledHandler

local myNewVar -- creates variable named "myNewVar"
put true into myNewVar -- puts a value into "myNewVar".

One common source of bugs involves misspelling a local variable name. Normally, doing
so doesn't produce an execution error, because if you use a variable that doesn't exist,
Revolution creates it automatically. This means that if you misspell a variable name,
Revolution creates a new variable with the mispelled name. Such a bug may be difficult
to track down because it can result in a variable having the wrong value without causing
an error message.

To prevent this problem, you can require all local variables to be declared with the local
command. You do this by turning on Script -> Variable Checking in the Script Editor
menu bar. If this option is on, trying to use a local variable that doesn't exist will cause an
execution error, instead of automatically creating it. Any misspelled variable names will
therefore cause an obvious execution error when their handler is executed, making them
easy to find.

Local variables are deleted when the handler that they're used in finishes executing. You
can also use the delete variable command to delete a local variable.

5.5.3 Script Local Variables
A script local variable can be used in any handler in an object's script. You cannot use a
script local variable in handlers in other objects' scripts. Unlike a local variable, a script
local variable retains its value even after a handler finishes executing.

To create a script local variable, you must use the local command in the script, but
outside any handler. We recommend you always declare script local variables at the top
of a script so they in one place and easy to find:

141

local mySharedVariable

on mouseDown
 put 2 into mySharedVariable
end mouseDown

on mouseUp
 answer mySharedVariable -- displays "2"
end mouseUp

Note: If you put the local command in a handler, instead of outside any handler, it
creates a local variable instead. The command creates a script local variable only if you
put it in the script but not within a handler.

You can also use the delete variable command to delete a script local variable.

5.5.4 Global Variables
A global variable can be used in any handler, anywhere in the application. Unlike a local
variable, a global variable retains its value even after the handler that created it finishes
executing. Unlike a script local variable, a global variable can be used by any handler in
any object's script.

The same global variable can be used by any stack during a session. You can declare a
global variable in one stack, and use it in others.

To create a global variable, you must declare it using the global command:

global someGlobalSetting

Important: You must also use the global command at the start of a handler to make
an existing global variable available to a handler. While a global variable can be used by
any handler, you must do this in any handler you are going to use it in. If you don't
declare a global variable before using it, the handler will not take the global variable's
existence into account, and will simply create a local variable with the same name.

You can use the global command either inside a handler, or outside any handler at the
top of a script (like a script local). If you use the command in a handler, the global
variable can be used by any statement in that handler. If you use the command in a script
but outside any handler, the global variable is available to every handler in that script.

142

The following example shows the use of a global variable in a button script. In this
example, the variable is declared outside any handler, so the individual handlers don't
need to declare it again:

global myGlobal -- declares global for the whole script

on mouseDown -- can use "myGlobal"
 put 1 into myGlobal
end mouseDown

on mouseUp -- can use "myGlobal"
 add 2 to myGlobal
 answer myGlobal -- displays "3"
end mouseUp

To use the same global variable in a handler where the variable isn't declared in the
script, you must place the global declaration in the handler:

on mouseUp -- in another button's script
 global myGlobal
 add 5 to myGlobal
 answer myGlobal
end mouseUp

If you click the first button, then the secoond, the second button displays the number 8.

As with script local variables, we recommend you place all global declarations in
scripts at the top of the script, making the declarations easy for you to find later.

Tip: You can get a list of existing global variables with the globalNames function. You
can also choose Development > Variable Watcher to see a list of global variables and
change their values. Or you can get the value using the Message Box.

Global variables are automatically deleted when you quit the application. You can also
use the delete variable command to delete a global variable.

5.5.5 Variable Names
The names of variables must consist of a single word and may contain any combination
of letters, digits, and underscores (_). The first character must be either a letter or an
underscore. You cannot use any Revolution Revolution language word as a name of a
variable.

Here are some examples of legal variable names:

someVariable

143

picture3
my_new_file
_output

Here are some names that cannot be used as variable names:

3rdRock -- illegal as starts with a digit
this&That -- illegal as "&" cannot be used
My Variable –- illegal as it is more than one word

Avoid giving a variable the same name as a custom property. If you refer to a custom
property, and there is a variable by the same name, Revolution uses the contents of the
variable as the name of the custom property. Generally this will produce unexpected
results.

Caution: Global variables whose names begin with "gRev" are reserved by the
Revolution development environment.

See the section on Tips for Writing Good Code below for advice on choosing variable
names.

5.5.6 Special Variable Types
Most of the time, you use variables that you create yourself, using the local or
global commands, or simply by putting a value into a new variable in order to create it.

Revolution also creates certain types of variables automatically: parameter variables,
command-line variables, environment variables, and the special variable it.

Parameter variables
In a handler for a custom command or custom function, you can define parameters on the
first line of the handler. For example, the following handler defines two parameters
named "thisThing" and "thatThing":

on myHandler thisThing,thatThing
 add thisThing to thatThing
 subtract thatThing from field 2
end myHandler

When you use the custom command or custom function, you can pass values to it using
the parameters:

myHandler 15,4+1
-- puts "15" into the parameter "thisThing",
-- and puts "5" into the parameter "thatThing"

144

When named parameters are used in a handler, they are called parameter variables.
Within the handler, the parameters can be used in the same way as local variables: you
can get their value, use them in expressions, and put data into them.

Like local variables, parameter variables persist only as long as the handler is executing.

Environment variables
Most operating systems that Revolution supports provide information about the operating
environment in environment variables.

You can access environment variables by prepending the $ character to the variable's
name. For example, the following statement gets the contents of the LOGNAME
environment variable, which holds the current user's login name:

get $LOGNAME

See your operating system's technical documentation to find out what environment
variables are available.

You can also create your own environment variables by prepending the $ character to the
new environment variable's name:

put field 3 into $MYENVVAR

Note: Environment variables behave like global variables and can be used in any
handler. However, you do not need to use the global command to declare them before
using them.

The environment variables that you create this way are available to the application, and
are also exported to processes started up by the shell function or the open process
command.

Command-line argument variables
If you start up the application from a command line, the command name is stored in the
variable $0 and any arguments passed on the command line are stored in numbered
variables starting with the $ character.

For example, if you start the application by typing the following shell command:

myrevapp -h name

then the variable $0 contains "myrevapp" (the name of the application), $1 contains
"-h", and $2 contains "name".

145

Note: Command-line argument variables behave like global variables and can be used
in any handler. However, you do not need to use the global command to declare them
before using them.

The special variable "it"
The it variable is a special local variable used by Revolution to store certain results.

Certain commands--such as get, convert, read from file, ask, and answer--
put their results in this special variable. For a complete list of commands that use the it
variable, see the entry for it in the Revolution Dictionary. The following example shows
how the answer command uses the it variable:

on mouseUp
 answer "Go where?" with "Backward" or "Forward"
 -- the answer command puts the button the user clicked
 -- into the it variable:
 if it is "Backward" then go back
 else go next
end mouseUp

You can use the it variable in the same way as any other local variable, using the put
command to put things into it and using the variable in expressions to work with the
contents.

5.5.7 Array Variables
A variable can hold more than a single value. A variable that holds more than one value
is called an array, and each of the values it holds is called an element. Each element has
its own name (called the element's key).

If you think of a variable as a box with a name, you can think of an array as a box with
compartments inside it. Each compartment is an element, and each compartment has a
name, or key, of its own.

You specify an element of an array variable by using the variable name along with the
element's key. You enclose the key in square brackets. The key may be a name, number
or variable. Here's an example that shows how to put data into one element of an array:

put "ABC" into myVariable["myKeyName"]

Note: If you use a key that's not a number or variable, you should enclose the key's
name in double quotes whenever you refer to it. This prevents problems in case there is a
variable or reserved word with the same name.

146

You can use any element of an array variable in the same way you use the whole
variable: put data into the element (or before or after it) and find out what data it contains.
In this way, any element of a variable is like a variable in and of itself.

Array elements may contain nested or sub-elements, making them multi-dimensional.
This type of array is ideal for processing hierarchical data structures such as trees or
XML. To access a sub-element, simply declare it using an additional set of square
brackets.

put "ABC" into myVariable["myKeyName"][“aChildElement”]

You may nest elements within themselves to any number of levels.

Deleting Elements of an Array
You use the delete variable command to remove one element from an array
variable, in the same way you delete a variable. To delete an element, you specify both
the variable and the element's key:

delete variable myVar["myElement"]
delete variable myVar[“myElement”][“child1”]

This statement removes the element named "myElement" from the variable "myVar", but
does not delete the other elements in the array.

Listing the Elements in an Array

Tip: To delete the contents of an element without deleting the element itself, put empty
into the element:

Tip: put empty into myVar["myElement"]

You use the keys function to list the elements in an array variable. The keys function
returns a list of elements, one per line:

put the keys of myArray into listOfElements

Listing Nested Elements within an Element
You use the keys function to list the child elements of an element withn an array
variable. The keys function returns a list of elements, one per line:

put the keys of myArray[“node25”] into listOfElements

Transforming a List of Data into an Array
The split command separates the parts of a variable into elements of an array. You can
specify what character in the list you want the data to be split by. The data will be
converted into a set of elements named according to where it is split. For example:

147

put "A apple,B bottle,C cradle" into myVariable
split myVariable by comma and space

Will result in the following:

 KEY VALUE
 A apple
 B bottle
 C cradle

For more details, see the split command in the Revolution Dictionary.

Combining the Elements of an Array into a List
The combine command combines the elements of the array into a single variable. After
the command is finished executing, the variable specified by array is no longer an array.

For example:

combine myArray using return

Will combine the contents of the each element of the original array so that they appear on
a separate line.

For more information, see the combine command in the Revolution Dictionary.

Nesting an Array
You may place an entire array as a child of an element by putting an array variable into
an element of another array. For example:

put tMyArray into tBigArray[“node50”]

Will result in the entire array being placed as a child of node50 within tBigArray.

More Information
For more information about using array variables, see the section on Processing Text and
Data.

5.5.8 Constants
A constant is a value that has a name. Like a variable, a constant is set in your script.
Unlike variables, constants cannot be changed.

When you use a constant, Revolution substitutes the value of the constant for its name.
The following example uses a constant named "slash":

put slash after field "Expressions" -- displays "/"

148

You create a new constant using the constant command.

You cannot put anything into a constant once it's been created.

Built-in constants
The Revolution language defines several constants, such as return, space, and
comma, for characters that have special meaning in scripts and therefore can't be entered
literally into an expression.

Tip: To see a list of all built-in constants, open the Documentation window, click
Revolution Dictionary, and choose "Constants" from the menu at the top of the window.

User-defined constants
You can also define your own constants using the constant command:

constant myName="Joe Smith"

Like variables, constants can have different scope depending on how they are created. A
constant can be defined as either a local constant or a script local constant:

If you place the constant command in a handler, the constant can be used only in that
handler.

If you place the constant command in a script, but outside any handler, the constant
can be used in any handler in the script.

5.6 Containers, Operators & Sources of Value

5.6.1 What is a Container?
Containers are sources of information that can be edited using chunk expressions. In
addition to variables, Revolution has six other container types: fields, buttons, images,
URLs, the selection, and the message box.

Fields, buttons, and imported images are all Revolution objects. All display their content
on the screen, in different ways, and the contents of all three are saved when you save the
stack they are in. URLs refer to external resources (either files on the system, or items on
an Internet server). The Message Box is a special container that's part of the development
environment. All of these containers are covered in more detail in their respective
sections.

5.6.2 Setting and Retrieving Data from Containers
You use the put command to place data into a container, or to place data from a
container into another container or variable. Containers support the use of chunk

149

expressions, the ability to specify a portion of a container by referring to it in English. For
more details, see the section on Chunk Expressions.

5.6.3 What are Sources of Value?
Sources of value are like containers. They can be retrieved using the get command.
However unlike containers, they cannot be set using the put command. Sources of value
include properties, function calls, literal strings, and constants.

5.6.4 Getting and Setting Properties
You can use the get command to retrieve data from properties. Properties may be set
using the set command. When retrieving data you may use chunk expressions. However
you must set a property in its entirety, using the set command. Properties are covered in
more detail in the section on Properties. Examples of retrieving and setting properties are
to be found throughout this User’s Guide.

5.6.5 What are Literal Strings?
A literal string is a string of characters whose value is itself. If the string is a number, the
value is that number.

5.6.6 Using Literal Strings
When you use a literal string in an expression, Revolution simply substitutes the string
for itself:

put "Hello World!" into field 1
get 1 + 2 + it
put 1 - 4.234 into field "Result"

Quoting strings
Literal strings that consist of more than one word or are reserved words in the Revolution
language must be enclosed in double quotes:

put "This is a test" into myVar -- works
put This is a test into myVar -- DOESN'T WORK - not quoted
put That into myVar -- works
put This into myVar -- DOESN'T WORK - reserved word

In some contexts, you can use an unquoted one-word literal string without causing a
script error. However, you should make a practice of always quoting literal strings (other
than numbers), because it ensures that the statement will continue to work properly even
if the string becomes a reserved Revolution word in the future.

If the Script -> Variable Checking option is set to true, compiling a script that contains
an unquoted literal string causes a script error.

150

5.6.7 What are Operators?
Use operators to put together, compare or perform an operation on data. Use a String
Operator to combine data. Use a Numeric Operator to perform a calculation. Finally, use
a Logical Operator to return true or false.

5.6.8 Numeric Operators
Numeric operators produce a number as their result. Numeric operators include the
arithmetic operators (+, -, *, /, mod, div, and ^) and the bitwise operators (bitAnd,
bitOr, bitXOr, and bitNot). For individual usage instructions, look up the operator you
wish to use in the Revolution Dictionary.

For example:

put "1+2 =" && 1+2 into field "Eq" -- displays "1+2 = 3"

String operators
String operators produce a string of characters as their result. String operators are the
concatenation operators (&, &&, and ,).

put "1+2 =" && 1+2 into field "Eq" -- displays "1+2 = 3"

5.6.9 Logical Operators
Logical operators produce either "true" or "false" as their result.

Logical operators include the comparison operators (=, <>, <, >, <=, >=), existence
operators (there is a, there is no, is in, is not in, is among, is not among, contains),
data type operators (is a, is not a), geometry operators (is within, is not within), and
basic logical operators (and, or, not).

if the platform is "MacOS" and field "Time" < zero then...

5.6.10 Binary versus Unary Operators
Operators can use either one argument (a unary operator) or two arguments (a binary
operator):

"a" & "b" -- & is binary
there is a field "c" -- there is a is unary

The bitNot, there is a, there is no, is a, is not a, and not operators are unary operators.
All other operators are binary operators.

5.6.11 Conversion of Values
Revolution converts values in expressions to whatever type of data is needed for the
operation. This conversion happens automatically, so you don't need to know what type

151

of data you are dealing with in advance (something that in other languages is called "type
casting").

For example, suppose you have the following statement:

put char 2 of "123" + char 3 of "456" into field 3

Character 2 of the literal string "123" is the single-character string "2", and character 3 of
the literal string "456" is the single-character string "6". When Revolution uses the +
operator, it automatically converts these strings to numbers so that they can be added
together. Then it converts the resulting number back to a string so that it can be placed in
a field as text.

5.6.12 Operator Precedence
When you combine sources of value using operators, Revolution evaluates each source of
value in the expression. Next, it applies any operators to arrive at a final value for the
expression. Revolution does not necessarily apply all the operators in right-to-left order.

Instead, it uses the operator precedence order to determine how to compute expressions
that include more than one operator. Precedence determines the order in which
Revolution carries out calculations in expressions. If an expression contains more than
one operator, the operators with higher precedence are calculated before operators with
lower precedence.

Figure 48 – Operator Precedence
Grouping () Any part of the expression in parentheses is

evaluated first. If parentheses are nested, the
innermost values are evaluated first.

Unary -
not
bitNot
there is a
there is no

Next, unary operations (that act on only one
operand) are done. This includes unary minus
(which makes a number negative).

Exponentiation ^ Next, exponentiation operations are done.
Multiplication *

/
div
mod

Multiplication and division are done next.
These are numeric operators and result in a
number.

Addition +
-

Addition and subtraction are done next.
These are numeric operators and result in a
number.

Concatenation &
&&
,

Operations that join two strings are done
next. These are string operators and result in
a string.

Comparison < Operations that compare two values are done

152

<=, ≤
>
>=, ≥
contains
is among
is not among
is in
is not in
is within
is not within
is a
is not a

next. These are logical operators and result in
either true or false.

Equality =, is
<>, !=, ≠, is not

Operations that compare two values for
equality are done next. These are logical
operators and result in either true or false.

bitAnd bitAnd bitAnd operations are done next.
bitXOr bitXOr bitXOr operations are done next.
bitOr bitOr bitOr operations are done next.
and and and operations are done next.
or or or operations are done last.
function calls Functions are evaluated after all possible

operators in the function’s parameters are
evaluated.

5.6.13 Using the Grouping Operator ()
Suppose you want to change the precedence used in an expression. The grouping operator
() has higher precedence than all other operators, so you can use it to change the order in
which operators are evaluated. In other words, if you enclose part of an expression in
parentheses, any operations inside the parentheses are evaluated before anything else
happens.

For example, function calls have higher precedence than division, so the expression the
sin of 1/4 means "get the sine of 1, then divide it by 4":

get the sin of 1/4 -- does the sin function first

If you want the sine of 1/4, you need to change the order of evaluation so that the division
is done first. You do this by surrounding the part you want evaluated first with
parentheses:

get the sin of (1/4) -- does the division first

If parentheses are nested, the expression within the innermost set of parentheses is
evaluated first.

153

5.6.14 Factors and Expressions
An expression is any source of value, or combination of sources of value. Any of the
sources of value discussed above – containers, properties, function calls, literal strings,
and constants – are simple expressions. You use operators to combine sources of value to
produce more complex expressions.

5.6.15 Defining Factors
A factor is the first fully resolvable portion of an expression. (All factors are expressions,
but not all expressions are factors.) A factor can be either a source of value, or an
expression that combines sources of value but doesn't include any binary operators
outside parentheses. Enclosing an expression in parentheses turns it into a factor.

These examples show some expressions, along with the first factor in each expression, to
help you see the distinction:

 Expression: Its first factor:
 3 + 4 3
 (3 + 4) (3 + 4)
 (3 + 4)/field 4 (3 + 4)
 field 6 * pi field 6
 sin of pi/4 sin of pi
 sin(pi/4) sin(pi/4)
 sin(pi/4) * exp2(12) sin(pi/4)
 whole world whole
 "whole world" "whole world"

When it matters
The distinction between factors and expressions matters when you're using the the form
of built-in functions, when you use URL, and when you refer to objects.

If you use the the form of a built-in function that has a parameter, the parameter must be
a factor, not an expression:

get the sqrt of 4 + 5 -- yields 7
get sqrt(4+5) -- yields 3
get the sqrt of (4 + 5) -- yields 3

In the first example above, although we intended to get the square root of 9, we actually
ended up with the square root of 4. This is because the expression 4 + 5 is not a factor
(because it contains a binary operator that's not inside parentheses). The first factor in the
expression 4 + 5 is 4, so the first example gets the square root of 4 (which is 2), then
adds 5 to that result.

The second example avoids this problem because it doesn't use the "the" form of the
function. Since the parameter is enclosed in parentheses, you can use either a factor or an
expression, and obtain the intended result, the square root of 9.

154

In the third example, we turn the expression 4 + 5 into a factor by surrounding it with
parentheses. Since the parameter is now a factor, we can get the correct result, even using
the the form of the function.

When referring to URLs, the URL is a factor:

get URL "file:myfile.txt" -- works
get URL "file:" & "myfile.txt" -- DOESN'T WORK
get URL ("file:" & "myfile.txt") -- works

In the first example, the URL specified is a factor because it is a simple string with no
operators.

The URL in the second example is not a factor, because it includes the binary operator &,
so the get command tries to get the URL "file:" – which is nonexistent--and
concatenate the content of that URL with the string "myfile.txt".

In the third example, we turn the URL into a factor by surrounding it with parentheses,
providing the expected result.

When referring to cards or backgrounds, the name, number or ID of the object is
an expression:

go card 1 + 1 -- goes to card 2
go card 3 of background "Data" && "Cards"
-- goes to first card with the group "Data Cards"

However, when referring to controls (including groups) or stacks, the name, number, or
ID of the object is a factor:

answer field 1 + 10 -- displays field 1 content + 10
answer field (1 + 10) -- displays field 11 content
select button "My" && "Button" -- DOESN'T WORK
select button ("My" && "Button") – works

5.7 Making Decisions
You make decisions using the if…then…else control structure or, if you want to
choose from a list of options, use the switch control structure.

5.7.1 If…then…else
Use the if control structure to execute a statement or list of statements under certain
circumstances. For example, you may want your application to respond differently
depending on a user action.

155

The if control structure always begins with the word if. There are four forms of the if
control structure:

if condition then statement [else elseStatement]

This form may have a line break before the words then or else or both.

if condition then
 statementList
[else
 elseStatementList]
end if

if condition
then statement
[else
 elseStatementList
end if]

if condition then
 statementList
else elseStatement

The condition is any expression that evaluates to true or false. The statementList or
elseStatementList consists of one or more Revolution statements, and can also include if,
switch, try, or repeat control structures. The statement or elseStatement consists of a
single Revolution statement.

If the condition evaluates to true, the statement or statementList is executed; if the
condition evaluates to false, the statement or statementList is skipped. If the if control
structure contains an else clause, the elseStatement or elseStatementList is executed if the
condition is false.

If one if control structure is nested inside another, use of the second form described above
is recommended, since the other forms may cause ambiguities in interpreting which else
clause belongs with which if statement.

The if control structure is most suitable when you want to check a single condition. If
you need to check for multiple possibilities, doing something different for each one, use a
switch control structure instead.

5.7.2 Switch
Use the switch control structure when you want to choose among several possible
values for an expression and then execute a set of statements that depends on the value.

switch [switchExpression]

156

 case {caseValue | caseCondition}
 [statementList]
 [default
 defaultStatementList]
end switch

The switch control structure begins with the word switch on a single line, with an
optional switchExpression. The switch line is followed by one or more case sections.
Each case section begins with the case keyword, followed by either a caseValue (if a
switchExpression was included on the switch line) or a caseCondition (if no
switchExpression was included). If the caseValue is equal to the switchExpression, or the
caseCondition evaluates to true, Revolution begins executing the following statements.

The case sections may be followed by an optional default section. If no break statement
has been encountered yet in the switch control structure, the statements in the default
section are executed. The switch structure ends with an end switch statement.

The switchExpression is any expression. The caseValue is any expression. If the
caseValue evaluates to the same value as the switchExpression, the condition is matched
for that case section. The caseCondition is any expression that evaluates to true or false.
(If the caseCondition evaluates to true, the condition is matched for that case section.
Each statementList consists of one or more Revolution statements, and can also include
if, switch, try, or repeat control structures. The defaultStatementList consists of one or
more Revolution statements.

Flow of control in a switch structure is less complicated than it looks. In general, when
Revolution enters a switch control structure, it looks for the first case section whose
caseValue is equal to the switchExpression, or whose caseCondition is true. When a
matching condition is found, all statements following it are executed--even statements in
another case section--until either a break statement is encountered or the switch control
structure ends.

This means that if you do not end a case section's statementList with a break statement,
the statements in all the following case sections (and the default section) are executed
even if those case sections don't have a matching caseValue or a true caseCondition.
Occasionally, this behavior is useful. However, in most cases, you should place a break
statement at the end of each statementList. This ensures that only one statementList is
executed, and the rest are skipped.

This also means that you can attach more than one caseValue or caseCondition to the
same statementList, simply by placing one case line above the next. The following
example beeps if the current card is either the last or first card, and goes to the next card
otherwise:

switch (the number of this card)
 case 1
 case (the number of cards)

157

 -- either of the above conditions execute the following
 -- statement:
 beep
 break
 default
 go next card
end switch

There is no limit to the number of case sections you can include in a switch control
structure, although the more case sections there are, the more expressions Revolution
must evaluate and the more slowly the switch structure executes.

5.8 Extending the Message Path
This section deals with how to extend the message path, either by adding code libraries to
the message path, or by sending messages directly to objects that are not currently in the
message path.

5.8.1 Creating a Code Library
A library is a set of custom commands and custom functions for a specific application or
a specific area of functionality. You can create a library for any purpose you want, and
put any custom commands and functions into it that you need. Libraries are typically
used to store routines that are common across your application. You can also exchange
useful libraries with other developers.

To create a code library, place the handlers you want to use in any object that's available
in your stack. This object is now a code library. Then use the insert script
command to add that object to the message path. To insert the script of a stack into the
message path, use the start using command. Typically you would run one of these
commands as your application is starting up, so that all the scripts can access the libraries
you require. Libraries do not need to be in the same stack or even stack file, you can load
any stack on disk and then load the libraries within it to make them available to all
running stacks. This makes it easy to design your application in modules, share code with
other developers or update your application libraries without modifying your application.
You can design your standalone application to work in the same way, making it easy to
update it using a small patch utility, i.e. without having to reinstall the entire application.

5.8.2 Using backScripts
To make the script of an object available to any other handler in Revolution:

insert script of card "Library" into back

The script of an object that's been inserted into the back, as in the above example, is
called a backScript. Such an object is placed last in the message path of all objects. It
receives messages after any other object, and just before the engine receives the message.
The backScript object remains in the message path until the end of the session (or
until you remove it with the remove script command.)

158

Because a backScript receives messages after all other objects in the message path, if
you place a handler in the backScript, it eventually gets all the corresponding
messages, no matter what object sent them, unless another object handles them first.

5.8.3 Using frontScripts
You can also extend the message path by placing objects into the front of the message
path, before any other object. The script of such an object is called a frontscript, and you
use the insert script command to place the object in the front:

insert script of button "Interceptor" into front

Because the object is in the front of the message path, it receives messages even before
the target of the message. For example, if you click a button, any objects in the front of
the message path receive the mouseUp message first, before the button. If you place a
handler in a frontscript, it receives all the corresponding messages before any other object
can handle them.

Use a frontscript when you want to be able to handle a message even if the target object
has a handler for it. For example, the Revolution development environment displays a
contextual menu when you Control-Shift-right-click an object. It does this with a
mouseDown handler in a frontscript. Whenever you click an object, the frontscript
receives the mouseDown message first, and checks whether the needed keys are being
pressed. If they are, the handler displays the contextual menu; the mouseDown message
is trapped and goes no further. Otherwise, the handler passes the message to the next
object in the message path, which is the object you clicked.

5.8.4 Using a Stack's Script with start using
The start using command is similar to the insert script command, but can be
used only to place stacks, not other object types, in the message path.

The start using command inserts the stack at the end of the message path, after the
object's stack and main stack, but before objects that have been inserted into the back
with insert script.

5.8.5 Sending Messages Directly to Objects
If the handler you want to use is not in the message path, instead of inserting it into the
path to make it a code library, you can use the send command to directly send a
message to the object whose script contains the handler.

Tip: You can use this technique to skip a portion of the message path, by sending the
message directly to an object further up the hierarchy.

159

Tip: on mouseUp -- in button script
 send "mouseUp" to this stack
end mouseUp

For example, suppose you have a handler for a custom command called "myCommand"
in the script of a button, and you want to execute that handler from a card script. Since
the button is not in the card's message path, you can't simply use the command in the
script, because if the "myCommand" message goes through the card's message path, it
won't find the handler. The following statement sends the message directly to the button
whose script includes the handler:

send "myCommand" to button "Stuff" of card "Stuff Card"

Important: When you send a message to an object, the message path for that message
starts with the target object. For example, if a stack script contains a send command that
sends a message to a button, the message moves through the button's message path, not
the stack's.

If you want to use a custom function whose function handler is not in the message path,
you can use the value function to specify the object. The value function can be
thought of as an equivalent of the send command for function calls.

For example, if card 1 of a stack contains a function handler called "myFunction" you
can use the function from within the script of card 3 with the following statement:

get value("myFunction(1,2,3)",card 1)

5.8.6 The send Command versus the call Command
The call command is similar to the send command. Like the send command, the
call command sends a message to the specified object, allowing you to use handlers
that aren't in the message path.

The difference between send and call is how they handle object references in the
handler that is triggered by the sent message. If the message is sent by the send
command, object references in the handler are treated relative to the object you sent the
message to.

For example, suppose card 1 of a stack contains the following handler:

on showCard
 answer the number of this card
end showCard

160

If a handler in the script of card 3 uses the send command to send a "showCard"
message to card 1, the dialog box displays "1", the number of the card the handler is on.
However, if the same handler uses the call command instead, the dialog box displays
"3", the number of the card that used the call command. In other words, handlers that
are triggered by the send command use the context of the object the handler is in, while
handlers that are triggered by the call command use the context of the object that
triggered the handler.

5.9 Timer Based Messaging
Timers allow you to schedule events to happen in the future. Use timers for updating the
display at regular intervals, processing data in chunks, playing animations, displaying
status bars, or anywhere where you need to schedule events. Messages can be scheduled
with millisecond precision and fire many times a second to create an animation, or can be
scheduled to arrive hours later. When you schedule an event to be delivered in the future,
Revolution continues to respond to user events as normal. This makes timer based
messaging ideal where you want your user interface to remain responsive while doing
data processing or updating the display.

5.9.1 Delivering a Message in the Future
To deliver a message after a specified time period, use the in time form of the send
command.

send "updateStatus" to me in 20 seconds
send "updateAnimation" to me in 33 milliseconds

5.9.2 Repeating a Timer Message
If you want to send a message repeatedly, for example to continuously draw frames in an
animation, simply send the same message again at the end of the message handler. The
following example starts an animation when the button is clicked on, then updates the
frame at 30 frames per second (every 33 milliseconds).

on mouseUp
 updateAnimation
end mouseUp

on updateAnimation
 -- insert code to update animation here
 send updateAnimation to me in 33 milliseconds
end updateAnimation

The result will be that the updateAnimation message is sent, it will update the screen
then send itself to itself in a 33 milliseconds. The message will continue to be delivered
indefinitely. Therefore it is important that you ensure there is an condition in the message
handler that will exit when the task is done, without sending the message again.
Alternatively you can directly cancel any message to stop the loop (see the section
Canceling a Timer Message below for more details).

161

Tip: To create a smooth script driven animation, you should allow for the time it takes to
redraw the display and for any interruptions (e.g. another intensive process causing your
message to be delivered late). Thus it is best to send the message a little more frequently
than you need to redraw the screen, and to check each time the message is activated what
frame you should currently be on.

local lTotalFrames, lStart – variables will be available to all script handlers

Tip: on mouseUp
 -- store the current start time
 put the milliseconds into lStart
 -- put the number of frames in your animation here
 put 100 into lTotalFrames updateAnimation
end mouseUp

Tip: on updateAnimation
 -- calculate milliseconds since start
 put the milliseconds – lStart into tElapsedTime
 put round(tElapsedTime / 33) into tFrameNumber
 -- calculate current frame number
 if tFrameNumber > lTotalFrames then
 -- if we have reached the end
 set the currentFrame of image 1 to lTotalFrames
 -- draw the last frame
 exit updateAnimation
 -- exit without sending updateAnimation again
 end if
 -- insert code for drawing the screen here
 -- in this example we assume the animation is a simple
 -- animated GIF
 -- but you could have any type of operation here, e.g.
 -- setting the transform of a vector
 set the currentFrame of image 1 to tFrameNumber
 -- send another updateAnimation message
 send updateAnimation to me in 22 milliseconds
end updateAnimation

Tip: For more example scripts involving timers and animation, see the Sample Scripts
section of the online documentation.

5.9.3 Canceling a Timer Message
When a timer message is sent, the result function contains the ID of the message
generated. Use the cancel command to cancel that message, preventing it from being
delivered. In the following example, a dialog will be displayed 20 seconds after the user

162

moves the mouse over a button. If the mouse moves out of the button before the 20
seconds has elapsed, the dialog will not be displayed.

local LTimerID

on mouseEnter
 send "displayDialog" to me in 20 seconds
 put the result into lTimerID
end mouseEnter

on mouseLeave
 cancel lTimerID
end mouseLeave

on displayDialog
 answer "The mouse was over this button for 20 seconds."
end displayDialog

Important: Ensure you have a way to cancel any pending timer messages. Typically
you may want to ensure that a timer is cancelled when the card is closed. For example a
timer message that draws an animation on the current card will generate a script error if
the card is changed and the message is still sent, as the script will no longer be able to
find the objects.

5.9.4 Displaying a List of Pending Timer Messages
You can get a list of all the currently pending timer based messages using the
pendingMessages function.

put the pendingMessages into tMessagesList

tMessagesList will now contain a list of messages, one per line. Each line consists of four
items, separated by commas:
 * the message ID
 * the time the message is scheduled for
 * the message name
 * the long ID property of the object that the message will be sent to

Tip: You can see a list of all pending messages using the Message Box pending
messages tab – the fifth icon along. For more details, see the section on the Message Box.

For more details, see the pendingMessages entry in the Revolution Dictionary.

163

Tip: To cancel all currently pending messages indiscriminately, use the following repeat
loop:

Tip: repeat for each line l in the pendingMessages
 cancel (item 1 of l)
end repeat

5.10 Tips for Writing Good Code
Its worth taking time to establish some conventions in how you write code. There are
many benefits to making your coding practices consistent. Consistently named variables
are easier to debug during development because you will always know the scope of a
particular variable (whether it's a global, or applies only to the current handler, etc.). It
makes it easier to understand the code you have written when you come to read it 6
months later. By making appropriate use of functions and libraries, you make your
program more modular and therefore easier to modify and add features to in the future. A
comprehensive guide to writing good code is beyond the scope of this manual. But we
thought it would be helpful to give you some hints and tips

Variable naming
Use consistent variable names to make your code easier to understand. It may not seem
important now, but when you have forgotten how it works 6 months later it will help to
make it readable. It also makes it easier to exchange you code with other members of the
Revolution community, when you need to get help with something.

Character
g
t
s
p
k
c

Example
gVar
tVar
sVar
pVar
kVar
cVar

Usage
Global variables
Handler-local variables
Script-local variables
Parameters
Constants
Custom properties

Variable scope
As a general rule of thumb, use a variable with just enough scope and no more for the
task at hand. In other words, if a handler local variable is all you need for a calculation,
don't use a script local. If a script local would do, don't use a global. This makes it less
likely that you will introduce unexpected errors into your code by using the same variable
name for different purposes. A handler local variable only has meaning within that
handler so you can safely use the same variable name in other handlers.

Use of comments
Comment your code as you go. Don't write comments where the meaning is obvious. But
even a sentence next to a complex routine will help you or others to quickly understand it
later.

164

Use of functions
If you're writing a lot of code, consider whether it can be written as a series of functions
instead of as a single monolithic handler. This makes it much easier to understand the
function of each discrete section of code. The more you can make these functions "black
boxes", that take input and produce output without dependences, the easier it will be if
you later want to change how that aspect of the code works.

Explicit Variables
If you're working on a larger code base you may want to turn on the Variable Checking
option in the Script menu of the Script Editor. This makes Revolution require that you
declare all variables (even script locals) before you can compile your script. It also
requires you to place all literal strings in quotes. This method of coding can help you to
quickly track down errors as you go by making you think a little about what variables you
are going to use at an early stage, and pointing out spelling mistakes.

What's most important is that you develop your own consistent style and then stick to it.
Once you have been applying some of these techniques for a short time, they will become
second nature.

For a more in-depth look at this subject, we recommend Fourth World's Scripting Style
Guide at:

http://www.fourthworld.com/embassy/articles/scriptstyle.html

165

Chapter 6 Processing Text and Data
Revolution has first-class text and data processing capabilities. Revolution’s unique
chunk expressions – the ability to refer to text using English-like statements like "word 3
to 5 of myVariable", combined with other powerful features which include regular
expressions, XML processing, associative arrays, data encoding and decoding functions
and compression and encryption algorithms – make it easy and simple to process text and
data of any complexity. This chapter is a reference guide, for an interactive workshop and
tutorial resources please see our web site:

http://www.runrev.com/developers/exploring-revolution/working-with-text/

The section Processing Text and Data in the Sample Scripts within the product
documentation contains additional code examples.

166

6.1 Using Chunk Expressions
Chunk expressions are the primary method of working with text in Revolution. A chunk
is an English-like way of describing an exact portion of text. You can use chunks both to
retrieve a portion of text, and to edit text. This topic defines the types of chunks you can
address and describes the syntax for specifying them.

6.1.1 Types of Chunks
The common types of chunks are the character, word, line, or item. An item can
be delimited by any character you specify. In addition, the token chunk is useful when
parsing script data.

Here is an example of a chunk expression using the word chunk:

put word 1 to 3 of field "text" into myVariable

6.1.2 Using Chunks with Containers
You can use a chunk of a container anywhere you use an entire container. For example,
you can use the add command to add a number to a line of a field:

add 1 to word 3 of field "Numbers"

You can also use chunk expressions to replace (using the put command) or remove
(using the deletecommand) any portion of a container.

6.1.3 Using Chunks with Properties
You can use chunk expressions to read portions of a property (such as the script
property). However, since you change a property with the set command rather than the
put command, you can't use a chunk expression to change a part of a property's value.
Instead, put the property value into a variable, use the chunk expression to change the
variable, then set the property to the variable's contents. The following example shows
how to change the third line of an object's script property:

put the script of me into tempScript
put "-- Last changed by Jane" into line 3 of tempScript
set the script of me to tempScript

6.1.4 The Character Chunk
A character is a single character, which may be a letter, digit, punctuation mark, or
control character.

A character cannot contain any other chunk type. It can be contained in any other
chunk type.

167

You can use the abbreviation char as a synonym for character in a chunk
expression.

Important: Characters in chunk expressions are assumed to be single-byte characters.
To successfully use chunk expressions with Unicode (double-byte) text, you must treat
each double-byte character as a set of two single-byte characters. For example, to get the
numeric value of the third Unicode character in a field, use a statement like the
following:

get charToNum(char 5 to 6 of field "Chinese Text")
-- char ((charNum* 2) - 1) to (charNum * 2) is
-- the single-byte equivalent of the double-byte
-- character "charNum" of the field.

6.1.5 The Word Chunk
A word is a string of characters delimited by space, tab, or return characters or
enclosed by double quotes.

A word can include characters, or tokens, but not items or lines. Words can be contained
in a line or item, but not in a token or character.

6.1.6 The item Chunk and the itemDelimiter Property
By default, an item is a string of characters delimited by commas.

Items are delimited by a character specified in the itemDelimiter property. You can
change the default comma to create your own chunk type by setting the
itemDelimiter property to any character.

An item can contain characters, tokens, or words, but not lines. Items can be contained in
a line, but not in a word, token, or character.

6.1.7 The line Chunk and the lineDelimiter Property
By default, a line is a string of characters delimited by the return character.

Lines are delimited by the character in the lineDelimiter property. By default, the
lineDelimiter is set to return, but you can create your own chunk type by setting
the lineDelimiter property to any character.

A line can contain characters, tokens, words, or items. Lines cannot be contained in any
other chunk type.

6.1.8 The Token Chunk
A token is a string of characters delimited by certain punctuation marks. The token
chunk is useful in parsing Revolution statements, and is generally used only for analyzing

168

scripts. For full details about the definition of the token chunk, see the Revolution
Dictionary.

A token can contain characters, but not any other chunk type. Tokens can be contained in
a word, item, or line, but not in a character.

6.1.9 Specifying a Chunk
The simplest chunk expression specifies a single chunk of any type. The following
statements all include valid chunk expressions:

get char 2 of "ABC" -- yields "B"
get word 4 of "This is a test" -- yields "test"
get line 7 of myTestData
put "A" into char 2 of myVariable

You can also use the ordinal numbers first, last, middle, second, third,
fourth, fifth, sixth, seventh, eighth, ninth, and tenth to designate single
chunks. The special ordinal any specifies a random chunk.

put "7" into last char of "1085" -- yields "1087"

6.1.10 Negative Indexes in Chunk Expressions
To count backwards from the end of the value instead of forward from the beginning,
specify a negative number. For example, the number -1 specifies the last chunk of the
specified type, -2 specifies the next-to-last chunk, and so forth. The following statements
all include valid chunk expressions:

get item -1 of "feather, ball, cap" -- yields "cap"
get char -3 of "ABCD" -- yields "B"

6.1.11 Complex Chunk Expressions
More complex chunk expressions can be constructed by specifying a chunk within
another chunk. For example, the chunk expression word 4 of line 250 specifies
the fourth word of line 250.

When combining chunks of different types to construct a complex chunk expression, you
must specify the chunk types in order. The following statements all include valid chunk
expressions:

char 7 of word 3 of myValue
word 9 of item 2 of myValue
last char of word 8 of line 4 of myValue

These, however, are not valid chunk expressions:

word 8 of char 2 of myValue --chars can't contain words

169

item 9 of first word of myValue --words can't contain items
line 3 of last item of myValue --items can't contain lines

6.1.12 Using Parentheses in Chunk Expressions
You use parentheses in chunk expressions for the same reasons they're used in arithmetic:

To make a complex expression clearer.

To change the order in which the parts of the expression are evaluated.

For example, consider the following statement:

put item 2 of word 3 of "a,b,c i,j,k x,y,z" -- BAD

The desired result is "y", the second item in the third word. But the statement above
causes an execution error, because it asks for an item of a word, and words can't contain
items. You can obtain the desired result by using parentheses to change the order of
evaluation:

put item 2 of (word 3 of "a,b,c i,j,k x,y,z") -- good

In the example above, Revolution gets the third word first, then gets the second item in
that word. By adding parentheses around (word 3 of "a,b,c i,j,k x,y,z"), you force
Revolution to evaluate that part of the chunk expression first. The value of the expression
in parentheses is "x,y,z", and item 2 of "x,y,z" is "y".

As with arithmetic expressions, the parts of a chunk expression that are in parentheses are
evaluated first. If parentheses are nested, the chunk expression within the innermost set of
parentheses is evaluated first. The part that is enclosed in parentheses must be a valid
chunk expression, as well as being part of a larger chunk expression:

put line 2 of word 1 to 15 of myValue -- won't work
put line 2 of word (1 to 15 of myValue) -- won't work
put line 2 of word 1 to 15 (of myValue) -- won't work
put line 2 of (word 1 to 15 of myValue) -- works!

The first of the above examples doesn't work for much the same reason as the previous
example: words can't contain lines. The second and third examples don't work because
neither "1 to 15 of myValue" nor "of myValue" is a valid chunk expression. However,
"word 1 to 15 of myValue" is a valid chunk expression, so the last example works.

6.1.13 Nonexistent Chunks
If you request a chunk number that doesn't exist, the chunk expression evaluates to
empty. For example, the expression char 7 of "AB" yields empty.

170

If you attempt to change a chunk that doesn't exist, what happens depends on what kind
of chunk you specify:

Nonexistent character or word:
Putting text into a character or word that doesn't exist appends the text to the end of the
container, without inserting any extra spaces.

Nonexistent item:
Putting text into an item that doesn't exist adds enough itemDelimiter characters to
bring the specified item into existence.

Nonexistent line:
Putting text into a line that doesn't exist adds enough return characters to bring the
specified line number into existence.

6.1.14 Specifying a Range
To specify a portion larger than a single chunk, you specify the beginning and end of the
range. These are all valid chunk expressions:

get char 1 to 3 of "ABCD" -- yields "ABC"
get word 2 to -1 of myValue -- second word to last word
put it into line 7 to 21 of myValue -- replaces

The start and end of the range must be specified as the same chunk type, and the
beginning of the range must occur earlier in the value than the end. The following are not
valid chunk expressions:

char 3 to 1 of myValue -- won't work end cannot be greater
 --than start
char -1 to -4 of myValue -- won't work 4th from last
 -- comes before last

Important: When using negative numbers in a range, remember that numerically, -x
comes after -x+1. For example, -1 is greater than -2, and -4 is greater than -7. The
greater number must come last in order to create a valid range.

6.1.15 Counting the Number of Words, Lines or Items
The number function returns the number of chunks of a given type in a value. For
example, to find out how many lines are in a variable, use an expression such as:

the number of lines in myVariable

You can also nest chunk expressions to find the number of chunks in a single chunk of a
larger chunk type:

171

the number of chars of item 10 of myVariable

6.2 Comparing and Searching
Revolution provides a number of ways of comparing and searching text. For most types
of searching and comparing, you will find chunk expressions easy and convenient.
However, if you have complex searching needs, you may prefer to use Regular
Expressions, covered in the next section.

6.2.1 Checking if a Part is within a Whole
You use the is in operator to check if some text or data is within another piece of text
or data. You can use the reverse is not in operator to check if text or data is not
within another piece of text or data.

"A" is in "ABC" -- evaluates to true
"123" is in "13" -- evaluates to false

You can also use the is in operator to check whether some text or data is within a
specified chunk of another container.

"A" is in item 1 of "A,B,C" -- evaluates to true
"123" is in word 2 of "123 456 789" -- evaluates to false

6.2.2 Case Sensitivity
Comparisons in Revolution are case insensitive by default (except for Regular
Expressions, which have their own syntax for specifying whether or not a match should
be case sensitive). To make a comparison case sensitive, set the caseSensitive
property to true. For more details, see the caseSensitive property in the Revolution
Dictionary.

6.2.3 Checking if text is True, False, a Number, an Integer, a Point, a
Rectangle, a Date or a Color
Use the is a operator for checking whether the user has entered data correctly and for
validating parameters before sending them to a handler. The is an operator is
equivalent to the is a operator.

A value is a:

boolean if it is either true or false

integerif it consists of digits (with an optional leading minus sign)

number if it consists of digits, optional leading minus sign, optional decimal point, and
optional "E" or "e" (scientific notation)

point if it consists of two numbers separated by a comma

172

rect if it consists of four numbers separated by commas

date if it is in one of the formats produced by the date or time functions

color if it is a valid color reference

The text you are checking can contain leading or trailing white space characters in all the
types except boolean. For example:

" true" is true -- evaluates to false.

The is a operator is the logical inverse of the is not a operator. When one is true,
the other is false.

"1/16/98" is a date -- evaluates to true
1 is a boolean -- evaluates to false
45.4 is an integer -- evaluates to false
"red" is a color -- evaluates to true

Tip: To restrict a user to typing numbers in a field, use the following script

Tip: on keyDown pKey
 if pKey is a number then pass keyDown
end keyDown

Tip: The keyDown message will only be passed if the key the user pressed is a number.
If you trap a keyDown message and don’t pass it, the key will not be entered into the
field. For more details, see the keyDown message in the Revolution Dictionary.

6.2.4 Check if a Word, Item or Line Matches Exactly
The is among operator tells you whether a whole chunk exists exactly within in a
larger container. For example, to find out whether the whole word "free" is contained
within a larger string, use the is among operator:

"free" is among the words of "Live free or die" -- true
"free" is among the words of "Unfree world" -- false

The second example evaluates to false because, although the string "free" is found in the
value, it's a portion of a larger word, not an entire word.

6.2.5 Check if one String Starts or Ends With Another
To check if one string begins with or ends with another, use the begins with or ends
with binary operators. For example:

173

“foobar” begins with “foo” -- true
“foobar” ends with “bar” -- true
line 5 of tList begins with "the"

6.2.6 Replacing Text
To replace one string with another, use the replace command. (If you want the search
string to contain a regular expression, see the section on the replaceText command below
instead.)

replace "A" with "N" in thisVariable -- changes A to N

To delete text using replace, replace a string with the empty constant.

replace return with empty in field 1 -- runs lines together

For more details, see the replace command in the Revolution Dictionary.

6.2.7 Retrieving the Position of a Matching Chunk
The offset, lineOffset, itemOffset and wordOffset functions can be
used to locate the position chunks within a larger container,. For example, this expression
returns the character number where the letter "C" was found:

get offset("C","ABC") -- returns 3

The lineOffset, itemOffset, and wordOffset functions can be used similarly
to locate lines, items, and words within a larger value.

To check if an item, line or word matches exactly using offset, set the wholeMatches
property to true.

6.2.8 Chunks Summary
A chunk expression describes the location of a piece of text in a longer string.

Chunk expressions can describe characters, items, tokens, words, and lines of
text.

To count backward from the end of a string, use negative numbers. For example, word
-2 indicates the second-to-last word.

You can combine chunk expressions to specify one chunk that is contained in another
chunk, as in word 2 of line 3 of myVariable.

For a range of chunks, specify the start and end points of the range, as in line 2 to 5
of myVariable.

174

To check if a chunk is within another, use the is in operator. To check if a chunk is a
specified type of data, use the is a operator. To check if a chunk starts or ends with
another uses the begins with or ends with operators.

To check if a chunk is contained exactly within a string use the is among operator. To
get an index specifying where a chunk can be found in a container, use the offset,
lineOffset, itemOffset, and wordOffset functions. To match only a complete
chunk within a string, set the wholeMatches to true before using offset.

6.3 Regular Expressions
Regular expressions allow you to check if a pattern is contained within a string. Use
regular expressions when one of the search or comparison chunk expressions does not do
what you need (see the section on Comparing and Searching above).

Revolution supports searching for a pattern, replacing a pattern, or filtering the lines in a
container depending on whether or not each line contains the pattern. Regular expressions
use PERL compatible or "PCRE" syntax. Figure 52, below, shows the supported syntax.
For more details on the supported syntax, see the PCRE manual at
http://www.pcre.org/man.txt

6.3.1 Searching using a Regular Expression
Use the matchText function to check whether a string contains a specified pattern.

matchText(string,regularExpression[,foundTextVarsList])

The string is any expression that evaluates to a string.

The regularExpression is any expression that evaluates to a regular expression.

The optional foundTextVarsList consists of one or more names of existing variables,
separated by commas.

matchText("Goodbye","bye") -- returns true
matchText("Goodbye","^Good") -- also returns true
matchText /
 (phoneNumber,"([0-9]+)-([0-9]+-[0-9]+)",areaCode,phone)

For more details on this function see the matchText function in the Revolution Dictionary.

If you need to retrieve the positions of the matched substrings in the optional
foundTextVarsList, use the matchChunk function instead of the matchText function.
These functions are otherwise identical.

175

6.3.2 Replacing using a Regular Expression
Use the replaceText function to search for a regular expression and replace the
portions that match. (If you simply want to replace text without using a regular
expression, see the replace command instead.)

replaceText(stringToChange,matchExpression,replacementStrin
g)

The stringToChange is any expression that evaluates to a string.

The matchExpression is a regular expression.

The replacementString is any expression that evaluates to a string.

replaceText("malformed","mal","well")--returns "wellformed"
replaceText(field "Stats",return,comma)-- makes
 -- comma-delimited

For more details, see the replaceText function in the Revolution Dictionary.

 [chars] matches any one of

the characters
inside the brackets

A[BCD]E matches "ACE", but not "AFE" or
"AB"

[^chars] matches any single
character that is not
inside the brackets

[^ABC]D matches "FD" or "ZD", but not
"AD" or "CD"

[char-char] matches the range
from the first char
to the second char.
The first char’s
ASCII value must
be less than the
second char’s
ASCII value

A[B-D] matches "AB" or "AC", but not
"AG"
[A-Z0-9] matches any alphanumeric
character

. matches any single
character (except a
linefeed)

A.C matches "ABC" or "AGC", but not "AC"
or "ABDC"

^ matches the
following character
at the beginning of
the string

^A matches "ABC" but not "CAB"

$ matches the
preceding character
at the end of a
string

B$ matches "CAB" but not "BBC"

* matches zero or ZA*B matches "ZB" or "ZAB" or "ZAAB",

176

more occurrences
of the preceding
character or pattern

but not "ZXA" or "AB"
[A-D]*G matches "AG" or "G" or "CAG",
but not "AB"

+ matches one or
more occurrences
of the preceding
character or pattern

ZA+B matches "ZAB" or "ZAAB", but not
"ZB"
[A-D]+G matches "AG" or "CAG", but not
"G" or "AB"

? matches zero or
one occurrences of
the preceding
character or pattern

ZA?B matches "ZB" or "ZAB", but not
"ZAAB"
[A-D]?G matches "AG" or "CAGZ", but not
"G" or "AB"

| matches either the
pattern before or
the pattern after the
|.

A|B matches "A" or "B"
[ABC]|[XYZ] matches "AY" or "CX", but
not "AA" or "ZB".

\ Causes the
following character
to be matched
literally, even if it
has special
meaning in a
regular expression

A\.C matches "A.C", but not "A\.C" or
"ABC"\\ matches "\"

any other
character

matches itself ABC matches "ABC"

Figure 49 – Regular Expression Syntax

6.3.3 Filtering using a Wildcard Expression
Use the filter command to remove lines in a container that either do, or do not match
a specified wildcard expression. Wildcard expressions are similar to regular expressions.

filter container {with | without} wildcardExpression

The container is any expression that evaluates to a container.

The wildcardExpression is a pattern used to match certain lines.

filter myVariable with "A?2"
filter me without "*[a-zA-Z]*"

For more details, including the format of wildcard expressions, see the filter command in
the Revolution Dictionary.

177

6.4 International Text Support
Revolution provides a number of methods for working with international text. This
includes the ability to render and edit Unicode text and convert between various encoding
types. We recommend that you consider how you are going to implement international
text support as early as possibly in the design of your application.

6.4.1 What are Text Encodings?
Fundamentally computers use numbers to store information, converting those numbers to
text to be displayed on the screen. A text encoding describes which number converts to a
given character. There are many different encoding systems for different languages.
Below is a table containing examples of some common encodings.

ASCII Single byte – English ASCII is a 7-bit encoding, using one byte per

character. It includes the full Roman
alphabet, Arabic numerals, Western
punctuation and control characters. See
http://en.wikipedia.org/wiki/ASCII for
more information.

ISO8859 Single byte ISO8859 is a collection of 10 encodings.
They are all 8-bit, using one byte per
character. Each shares the first 128 ASCII
characters. The upper 80 characters change
depending on the language to be displayed.
For example ISO8859-1 is used in Western
Europe, whereas ISO8859-5 is used for
Cyrillic. NB: Revolution only supports
ISO8859-1. You should use Unicode to
represent other languages, converting if
necessary (see below).

Windows-1252 Single byte – English This is a superset of ISO8859-1 which uses
the remaining 48 characters not used in the
ISO character set to display characters on
Windows systems. For example curly quotes
are contained within this range.

MacRoman Single byte – English MacRoman is a superset of ASCII. The first
128 characters are the same. The upper 128
characters are entirely rearranged and bear no
relation to either Windows-1252 or ISO8859-
1. However while many of the symbols are in
different positions many are equivalent so it
is possible to convert between the two.

UTF-16 Double byte – Any UTF-16 typically uses two bytes per code
point (character) to display text in all the
world’s languages (see Introduction to

178

Unicode, below). UTF-16 will take more
memory per character than a single-byte
encoding and so is less efficient for
displaying English.

UTF-8 Multi-byte - Any UTF-8 is a multi-byte encoding. It has the
advantage that ASCII is preserved. When
displaying other languages, UTF-8 combines
together multiple bytes to define each code
point (character). The efficiency of UTF-8
depends on the language you are trying to
display. If you are displaying Western
European it will take (on average) 1.3 bytes
per character, for Russian 2 bytes (equivalent
to UTF-16) but for CJK 3-4 bytes per
character.

Figure 50 – Common text encodings

6.4.2 What are scripts?
A script is a way of writing a language. It takes the encoding of a language and combines
it with its alphabet to render it on screen as a sequence of glyphs. The same language can
sometimes be written with more than one script (common among languages in India).
Scripts can often be used to write more than one language (common among European
languages).

Scripts can be grouped together into four approximate classes. The "small" script class
contains a small alphabet with a small set of glyphs to represent each single character.
The "large" script class contains a large alphabet and with a larger set of glyphs. The
"contextual" script class contains characters that can change appearance depending on
their context. And finally the "complex" script class contains characters that are a
complex function of the context of the character – there isn’t a 1 to 1 mapping between
code point and glyph.

Roman Small script The Roman encoding has relatively few

distinct characters. Each character has a
single way of being written. It is written from
left to right, top to bottom. Every character
has a unique glyph. Characters do not join
when written. For example: The quick brown
fox.

Chinese Large script The Chinese encoding has a large number of
distinct characters. Each character has a
single way of being written.

Greek Contextual script Every character except sigma has a unique
glyph. Sigma changes depending on whether
it is at the end of a word or not. Characters do

179

not join when written. The text runs left to
right, top to bottom. For example:

Arabic Contextual script The glyph chosen is dependent on its position

in a word. All characters have initial, medial
and terminal glyphs. This results in a
calligraphic (joined up) style of display. The
text runs right to left, top to bottom display.
For example:

Devanagari Complex script In this script there is no direct mapping from
character to glyph. Sequences of glyphs
combine depending on their context. The text
runs from left to right, top to bottom.

Figure 51 – Common scripts

6.4.3 Introduction to Unicode
The purpose of Unicode is to provide a way to display all of the world’s languages.
Before Unicode multiple encodings were needed to display text from different parts of
the world (see above). In order to use international text in Revolution, it is necessary to
use Unicode.

6.4.4 How does Unicode work?
Unicode is an international standard (see http://unicode.org/). It works by assigning a
unique number to every character in all of the world’s languages and works regardless of
the platform, program or language in use. In order to have enough space to provide a
unique number for every character, Unicode has a 21-bit space of code points. Most
characters (though not all) have a 1-1 code unit to character mapping. Each code unit has
implicit properties to aid in generalized processing. Most languages have their own
specific range of code point values.

All existing text encodings can round-trip through Unicode, which means that they can be
converted into Unicode and then back into their original format without losing data.
Revolution has a number of functions you can use to encode and decode Unicode.

Unicode is not an encoding as such, instead it can be represented in several different
encodings (see table above) – UTF-8, UTF-16 or UTF-32.

The Unicode standard defines algorithms for case mapping, sorting, searching and word-
breaking. Revolution currently has limited support for these functions but can be easily
extended using externals.

6.4.5 Using Unicode in Revolution Fields and Objects
Revolution fields and other controls use the UTF-16 encoding for Unicode. In order to
use Unicode in a field or in the labels of controls, paste in Unicode text, or set the
textFont of the control to ",unicode".

180

Currently Revolution fields support display of complex scripts but does not yet support
display of right to left text. Support is planned in the future.

Use the unicodeText to get and set the contexts of a field as UTF-16 using a script.

set the unicodeText of field 1 to URL "binfile:Chinese.txt"
-- displays a file containing UTF-16 text in a field

put the unicodeText of field 1 into tUnicodeText
-- retrieves the contents of a field allowing it to
-- be converted or manipulated by script

 To set the title of a stack to a UTF-16 string use the unicodeTitle property.

6.4.6 Manipulating Unicode – Using UTF-8
While Revolution fields support display of Unicode in UTF-16, Revolution’s chunk
expressions are currently not aware of Unicode. Support is planned in the future. At
present you should write your own functions to process Unicode text.

If you want to use thecharToNum and numToChar functions to encode or decode
Unicode (UTF-16) characters you should set the local property useUnicode to true.

Important: We recommend you use UTF-8 in your application whenever you want to
store or manipulate Unicode data. UTF-8 has the advantage that it preserves ASCII
punctuation. This means that you can still use the word, item and line chunk expressions
to manipulate UTF-8. You cannot use the character chunk as that will return individual
bytes.

UTF-8 will round trip through the Revolution external’s interface. Both Mac OS X and
Windows have a full set of Unicode-compliant string handling functions that are easy to
wrap around. You may want to consider implementing an external if you wish to use
these functions to manipulate UTF-8.

You should convert to and from UTF-16 as necessary for use with fields (see below).

6.4.7 Converting between UTF-16 and Other Encodings
Use the uniEncode function to encode Unicode as UTF-16. Pass to the uniEncode
function the encoding you are converting from and it will convert the data, assuming the
data to be properly encoded in the encoding you have specified.

put uniEncode(inputText,"Japanese") into tDisplayText
-- converts Shift-JIS to UTF-16

181

To convert from UTF-16 back to UTF-8 or to another character set, use the uniDecode
function. Pass to it the data as UTF-16 together with the desired encoding.

put uniDecode(field "Japanese","UTF8") into tUTF8
-- converts a field to UTF8

6.4.8 Converting between MacRoman and Windows-1252
Use the ISOToMac and the MacToISO functions to convert between MacRoman and
Windows-1252.

Tip: Revolution automatically performs this translation on the contents of fields and
object labels when a stack is loaded on a different platform from the one it was saved on.
However data stored in custom properties is not translated as it is treated as binary data,
and data in external files is also not affected. You may therefore want to manually
translate between the two character sets using these functions.

put ISOToMac(tISOText) into tMacText
-- convert from Windows-1252 to MacRoman

put MacToISO(tMacText) into tMacText
-- convert from MacRoman to Windows-1252

6.5 Using Arrays
For an introduction to arrays, see the section on Array Variables in the chapter Writing
Revolution Code.

6.5.1 When to Use Arrays
Each element in an array can be accessed in constant time. This compares favorably with
other functions that become look up information by counting through a variable from the
beginning (for example the offset functions). If you consider a problem that requires the
computer to search through the data several times then if the computer has to start at the
beginning of the variable, the search will get slower and slower as the search function
gets further through the data.

Each element in an array can contain data of any length, making it easier to group
together records that contain assorted lengths or delimiter characters.

Arrays can contain nested elements. This makes them ideal for representing complex data
structures such as trees and XML data that would be hard to represent as a flat structure.

Each sub-array in an array can be accessed and operated on independently. This makes it
possible to copy a sub-array to another array, get the keys of a sub-array, or pass a sub-
array as a parameter in a function call.

182

Revolution includes various functions for converting information to and from arrays, and
for performing operations on the contents of arrays.

These characteristics make arrays useful for a number of data processing tasks, including
tasks that involve processing or comparing large amounts of data. For example, arrays are
ideal if you want to count the number of instances of a specific word in a piece of text. It
would be possible to implement such a word count by iterating through each word and
checking if it is present in a list of words, then adding a comma followed by a count to
that list of words. Such a method is cumbersome to implement and as the list of words
gets longer the routine will slow down because Revolution has to search the list from the
start with each new word. Conversely, implementation with an array is simple. Because
each element in an array can be named using a text string, we can create an element for
each word and add to the element’s contents. Not only is the code much shorter but it is
also an order of magnitude faster.

on mouseUp
 --cycle through each word adding each instance to an array
 repeat for each word tWord in field "sample text"
 add 1 to tWordCount[tWord]
 end repeat
 -- combine the array into text
 combine tWordCount using return and comma
 answer tWordCount
end mouseUp

Text in field "Sample Text:

Single Line – execute single line and short scripts
Multiple Lines – execute multiple line scripts
Global Properties – view and edit global properties
Global Variables – view and edit global variables

Resulting value of tWordCount:

Global,4
Line,3
Lines,1
Multiple,2
Properties,2
Single,2
Variables,2
and,3
edit,2
execute,2
scripts,2
short,1
view,2
–,4

Figure 52 – Results of running word count script

183

6.5.2 Array Functions in Revolution
The following is a list of all the functions in Revolution that work with array’s. For a full
description of each one, see the corresponding entry in the Revolution Dictionary.

Each of these functions can be used on subarrays within an array. Instead of referring to
the array variable, refer to x[x]

add adds a value to every element in an array where the element is a number
combine convert text to an array using delimiters that you define
customProperties returns an array of the custom properties of an object
delete variable remove an element from an array
divide divides each element in an array where the element is a number. For example:

divide tArray by 3

Contents of array:

A = 1
B = 2
C = 3
D = 4
E = 5

Resulting value of tWordCount:

0.333333
0.666667
1
1.333333
1.666667

Figure 53 – Results of running the divide command on an array

element keyword is used in a repeat loop to loop through every element in an array
extents finds the minimum and maximum row and column numbers of an array
whose keys are integers
intersect compares arrays, removing elements from one array if they have no
corresponding element in the other
keys returns a list of all the elements within an array
matrixMultiply performs a matrix multiplication on two arrays whose elements are
numbers and whose keys are sequential numbers
multiply multiplies a value in every element in an array where the element is a
number
properties returns an array of the properties of an object
split converts an array into text, placing delimiters you separate between the elements
sum - returns the sum total of all the elements in an array where the element is a number
transpose swaps the order of the keys in each element in an array whose elements are
numbers and whose keys are sequential numbers
union combines two arrays, eliminating duplicate elements

184

6.6 Encoding and Decoding
Revolution includes a number of built-in functions for encoding and decoding data in a
variety of popular formats.

6.6.1 Styled Text
Revolution supports encoding and decoding styled text as HTML and RTF. This feature
is useful when you want to adjust text styles programmatically, or import or export text
with style information.

Important: At present HTML conversion support only extends to the styles that the
Revolution field object is capable of rendering.

To convert the contents of a field to HTML compatible tags, use the HTMLText
property. This property is documented in detail in the Revolution Dictionary. You can
also set this property to display styled text in a field.

Tip: You can get and set the HTMLText property of a chunk within a field, allowing
you to view or change text attributes on a section of the text. For example, to set the text
style of line 2 of a field to bold:

on mouseUp
 put the htmltext of line 2 of field "sample text" \
 into tText
 replace "<p>" with "<p>" in tText
 replace "</p>" with "</p>>" in tText
 set the htmltext of line 2 of field "sample text" \
 to tText
end mouseUp

Tip: While this is not as simple as directly applying the style to the text using:

Tip: set the textStyle of line 2 of field "sample" to "bold"

Tip: It does allow you to search and replace text styles or perform multiple complex
changes to the text based on pattern matching. Performing a series of changes on the
HTMLText in a variable then setting the text of a field once can be quicker than updating
the style repeatedly directly on the field.

Use the HTML keyword with the Drag and Drop features and the Clipboard features to
perform conversion of data to and from HTML when exchanging data with other
applications. For more information see the section on Drag and Drop in the chapter
Scripting a User Interface.

185

Use the RTFText property and RTF keyword to work with the RTF format.

Use the unicodeText property and Unicode keyword to work with Unicode. For
more information see the section on International Text Support, above.

6.6.2 URLs
To encode and decode URLs, use the URLEncode and URLDecode functions. The
URLEncode function will make text safe to use with a URL – for example it will replace
space with +. These functions are particularly useful if you are posting data to a web
form using the POST command, using the launch URL command or sending email
using the revMail function. For more information see the Revolution Dictionary.
Text:

"Jo Bloggs" <jo@blogs.com>

URL Encoded result:

%22Jo+Bloggs%22+%3Cjo%40blogs.com%3E

Figure 54 – Results of encoding a URL

6.6.3 Binary Data – Base64 (for MIME Email Attachments and Http
Transfers)
To encode and decode data in Base64 (e.g. to create an email attachment), use the
base64Encode and base64Decode functions. These functions are useful anywhere
you want to convert binary data to text data and back. For more information see the
Revolution Dictionary.

6.6.4 Binary Data – Arbitrary Types
Use the binaryEncode and binaryDecode functions to encode or decode binary
data. These functions are documented in detail in the Revolution Dictionary.

6.6.5 Character to Number conversion
To convert a character to and from its corresponding ASCII value use the charToNum
and numToChar functions.

put charToNum("a") -- results in 97

To convert Unicode characters, set the useUnicode local property to true. For more
information see the section on International Text Support, above.

6.6.6 Data Compression
To compress and decompress data using GZIP, use the compress and decompress
functions.

Tip: The following routine asks the user to select a file, then creates a GZip
compressed version with a ".gz" extension in the same directory as
the original.

186

Tip: on mouseUp
 answer file "Select a file:"
 if it is empty then exit mouseUp
 put it & ".gz" into tFileCompressed
 put compress(URL ("binfile:" & it)) into \
 URL ("binfile:" & tFileCompressed)
end mouseUp

6.6.7 Encryption
To encrypt or decrypt data use the encrypt and decrypt commands. These
commands are documented in the Revolution Dictionary.

Note: The encryption library is only available in the Enterprise Edition of Revolution.

6.6.8 Generating a Checksum
Use the MD5Digest to generate a digest of some data. Use this function later to
determine if the data was changed or to check that transmission of information was
complete.

Tip: In this example we save the MD5Digest of a field when the user opens it for
editing. In the field script place:

Tip: on openField
 set the cDigest of me to md5Digest(the htmlText of me)
end openField

Tip: If the field is modified (including if a text style is changed anywhere) then a
subsequent check of the MD5Digest will return a different result. In the following
example we check this digest to determine whether or not to bring up a dialog alerting
the user to save changes:

Tip: on closeStackRequest
 if the cDigest of field "sample text" is not \
 md5Digest(the htmlText of field "sample text") then
 answer "Save changes before closing?" with "No" \
 or "Yes"
 if it is "Yes" then
 save this stack
 end if
 end if
end closeStackRequest

187

6.7 XML
Extensible Markup Language, or XML, is a general-purpose language for exchanging
structured data between different applications and across the Internet. It consists of text
documents organized into a tree structure. It can generally be understood by both human
and machine.

Revolution includes comprehensive support for XML through its built-in XML library.
Additionally, standards exist to support exchange of XML over a network connection (or
"web services") – most notably through the XML-RPC and SOAP protocols. Revolution
includes a library for using XML-RPC and there are examples of using Revolution to
build SOAP applications available.

6.7.1 The XML Tree Structure
XML is simply a data tree. It must start with a root node, be well formed and nested.
Tags may not overlap. For more information on XML see
http://en.wikipedia.org/wiki/XML

Figure 52 below shows a typical XML tree. In this example we have represented a simple
stack file as XML. The stack file has a single stack with two cards. On the first card there
is a field named "Hello" with the contents "Hello World!". There is a second card, which
is blank.

Figure 55 – XML Tree Representation of a Stack

Root node Root element,

document element
The start of the XML document, which
includes a declaration the file is XML, the
version of XML in use and the text encoding

Comment Comments can be placed anywhere in the

<?xml version="1.0" encoding="UTF-8"?>
<!-- This is a comment. -->
<stackFile>

<stack name="Example" rect="117,109,517,509">
<card>

<field name="Hello" rect="100,100,200,125">
<text>Hello World!</text>
<htmlText><p>Hello World</p></htmlText>

</field>
</card>
<card/>

</stack>
</stackFile>

Root node

Comment

Node

Empty node

Entity reference

AttributeXML Declaration

188

tree. They start with <! and end with ->. They
must not contain double dashes --

Node Element, tag The items that makes up the content within
an XML document

Attributes Properties attributable to a given node. A
node may have zero or more properties

Empty node Empty element A method of specifying that a node exists but
is empty

Entity reference A method of specifying special characters.
XML includes support for &, <, >, ‘ and ".
Additional entities can be defined using a
Document Type Definition or DTD.

6.7.2 When to use XML
XML has a number of advantages and disadvantages. It is predominantly useful when
exchanging data between different applications or systems. However like any method of
data storage or transfer it is not suitable for all types of application.

The advantages of XML are: it is text based making it more easily readable by humans as
well as just machines; it is self describing; it is based on international standards and in
widespread use with a large number of editors available for it; the hierarchical structure
makes it suitable for representing many types of document; and it is platform
independent.

The disadvantages are that: it is sometimes less efficient than binary or even other forms
of text representations of data; for simple applications it is more complicated than may
strictly be necessary; and the hierarchical model may not be suitable for all data types.

You may decide that using XML is the best solution for your particular data storage or
transmission requirements. Or you may be working on a project with others where using
XML or a web service based on it is a requirement. However in many cases a binary
format or database will be more appropriate. You should give consideration to the
method you intend to use as early as possible in the design of your application.

6.7.3 Methods for Handling XML in Revolution
Revolution includes a comprehensive XML library for working with XML documents.
Using the XML library has the advantage that we include syntax and functions for
performing the common operations on XML that you may need. However the
disadvantage is that at present the library is implemented as an external command
(included built-in to the Revolution distribution) and thus does not benefit from native
Revolution-engine syntax. If you have simple XML processing requirements you may
prefer to use Revolution’s built in chunk expression support to do the parsing, matching
or construction of XML. For more information see the section on Using Chunk
Expressions. However if you are working with complex XML then the library includes a
comprehensive suite of features.

189

In addition to the XML library, Revolution has a built-in script-based library for working
with XML-RPC.

Tip: To see a list of commands for working with XML-RPC, filter the Revolution
Dictionary with the term XMLRPC.

Tip: An interactive stack demonstrating using the Revolution XML library is available
from http://support.runrev.com/resources/xml.php

6.7.4 The XML Library: Loading, Displaying and Unloading XML
This section discusses using the XML library in detail.

Getting Started – Creating an XML Tree in Memory
In order to work with an XML document, you start by creating an XML tree of that
document in memory. There are two functions revCreateXMLTreeFromFile and
revCreateXMLTree. Use the former to load XML document from a file and create a
tree in memory, use the latter to create an XML tree from another data source such as a
variable, field or download.

revCreateXMLTree(XMLText, dontParseBadData, createTree, \
 sendMessages)

revCreateXMLTreeFromFile(filePath, dontParseBadData, \
 createTree, sendMessages)

In revCreateXMLTree the XMLTextis the string containing the XML. In
revCreateXMLTreeFromFile this parameter is replaced with the filePath – the file
path to the XML document. Both functions return a single value – the ID of the tree that
has been created.

Important: Both functions require you to specify all the parameters. You must store the
ID returned by these functions in order to access the XML tree later in your script.

The dontParseBadData specifies whether or not to attempt to parse poorly formed XML.
If this is set to true then bad data will be rejected and generate an error instead of
constructing the tree in memory.

The createTree specifies whether to create a tree in memory or not. You will generally
want this to be true, unless you are intending only to read in an XML file to determine
whether or not it is properly structured.

The sendMessages specifies whether or not messages should be sent when parsing the
XML document. Messages can be useful if you want to implement functionality such as a

190

progress bar, progressively render or progressively process data from a large XML file as
it is being parsed. If you set this to true, revXMLStartTree will be sent when the
parsing starts, revStartXMLNode will be sent when a new node is encountered,
revEndXMLNode will be sent when a node has been completed, revStartXMLData
will be sent at the start of a new block of data and finally revXMLEndTree will be sent
when processing is finished.

Retrieving information from an XML tree
Now that you have created your XML tree in memory (above) and stored the tree ID you
can use the functions in this section to retrieve information from within the tree.

Important: Any text you fetch using the Revolution XML library will be in the
encoding specified in the root node of the XML tree.

Note: All the examples in this section assume that we have loaded the XML tree
depicted in Figure 52 – XML Tree Representation of a Stack, above. We assume that
you have loaded this tree using the revCreateXMLTree function described above,
and that this function has returned a value of 1 as the ID of the tree.

Retrieving the Root Node
To retrieve the root node from your XML tree, use the revXMLRootNode function.

revXMLRootNode(treeID)

The treeID contains the ID of the XML tree you want to access. For example, using the
following function with sample tree depicted above:

put revXMLRootNode(1) into tRootNode

Results in tVar containing: stackFile

Retrieving the First Child Element in a Node
To retrieve the first child element use revXMLFirstChild.

revXMLFirstChild(treeID,parentNode)

The parentNode contains the path to the node we want to retrieve the first child from.
Nodes are referenced using a file-path like format with / used to denote the root and
delimit nodes.

We can use this function on our sample XML as follows:

191

-- pass the stackFile result in retrieved in tRootNode
-- to the revXMLFirstChild function:
put revXMLFirstChild(1,tRootNode) into tFirstChild

-- EQUIVALENT to the following:
put revXMLFirstChild(1,"stackFile") into tFirstChild

This results in tFirstChild containing: /stackFile/stack

Retrieving a list of Children in a Node
To retrieve a list of children of a node use revXMLChildNames.

revXMLChildNames(treeID, startNode, nameDelim, childName, \
 includeChildCount)

The nameDelim is the delimiter that separates each name that is returned. To get a list of
names, specify return.

The childName is the name of the type of children to list.

includeChildCount allows you to include the number of each child in square brackets
next to the name.

We can use this function on our sample XML as follows:

put revXMLChildNames(1,"/stackFile/stack", return, "card",
true) into tNamesList

This results in tNamesList containing:
card[1]
card[2]

Retrieving the Contents of the Children in a Node
To retrieve a list of children of a node including their contents, use
revXMLChildContents.

revXMLChildContents(treeID,startNode,tagDelim,nodeDelim, \
 includeChildCount,depth)

See above for an explanation of treeID, startNode and tagDelim.

The nodeDelim indicates the delimiter that separates the contents of the node from its
name.

The depth specifies the number of generations of children to include. If you use –1 as the
depth then all children are return.

192

Using this function on our example XML file as follows:

put revXMLChildContents(1, "/stackFile/stack", space, \
 return, true, -1) into tContents

This results in tContents containing:

card[1]
field[1]
text[1] Hello World!
htmlText[1] <p>Hello World</p>
card[2]

Retrieving the Number of Children in a Node
To retrieve the number of children of a node revXMLNumberOfChildren.

revXMLNumberOfChildren(treeID,startNode,childName,depth)

See above for an explanation of treeID, startNode, childName and depth.

Using this function on our example XML file as follows:

put revXMLNumberOfChildren(1, "/stackFile/stack", "card", \
 -1)into tContents

This results in tContents containing: 2

Retrieving the Parent of a Node
To retrieve a node’s parent use the revXMLParent function.

revXMLParent(treeID,childNode)

See above for an explanation of treeID and startNode.

Using this function on our example XML file as follows:

put revXMLParent(1,"stackFile/stack") into tParent

Results in tParent containing: /stackFile

Retrieving an Attributes from a Node
To retrieve an attribute from a node use revXMLAttribute.

revXMLAttribute(treeID,node,attributeName)

See above for an explanation of treeID and node.

193

The attributeName is the name of the attribute you want to retrieve the value for.

Using this function on our example XML file as follows:

put revXMLAttribute(1,"/stackFile/stack","rect") into tRect

This results in tRect containing: 117,109,517,509

Retrieving all Attributes from a Node
To retrieve all attributes from a node use revXMLAttributes.

revXMLAttributes(treeID,node,valueDelim,attributeDelim)

See above for an explanation of treeID and node.

The valueDelim is delimiter that separates the attribute’s name from its value.

The attributeDelim is delimiter that separates the attribute’s name & value pair from
each other.

Using this function on our example XML file as follows:

put revXMLAttributes(1, "/stackFile/stack/card/field", \
 tab, return) into tFieldAttributes

This results in tFieldAttributes containing:
name Hello
rect 100,100,200,125

Retrieving the Contents of Attributes
To retrieve the contents of a specified attribute from a node and its children, use
revXMLAttributeValues.

revXMLAttributeValues(treeID, startNode, childName, \
 attributeName, delimiter, depth)

See above for an explanation of treeID, startNode and depth.

The childName is the name of the type of child to be searched. Leave this blank to
include all types of children.

The attributeName is the name of the attribute to return the values for.

The delimiter is the delimiter to be used to separate the values returned.

Using this function on our example XML file as follows:

194

put revXMLAttributeValues(1, "/stackFile/", , "rect", \
 return, -1) into tRectsList

This results in tRectsList containing:
117,109,517,509

100,100,200,125

Retrieving the Contents of a Node
To retrieve the contents of a specified node, use revXMLNodeContents.

revXMLNodeContents(treeID, node)

See above for an explanation of treeID and node.

Using this function on our example XML file as follows:

put revXMLNodeContents(1, \
 "/stackFile/stack/card/field/htmlText") into \
 tFieldContents

This results in tFieldContents containing:
<p>Hello World</p>

Note: The entity references for the < and > symbols have been translated into text in
this result.

Retrieving Siblings
To retrieve the contents of the siblings of a node, use revXMLNextSibling and
revXMLPreviousSibling.

revXMLNextSibling(treeID,siblingNode)
revXMLPreviousSibling(treeID,siblingNode)

The siblingNode is the path to the node to retrieve the siblings from.

Using this function on our example XML file as follows:

put revXMLPreviousSibling(1, "/stackFile/stack/card[2]")\
 into tPrev
put revXMLNextSibling(1, "/stackFile/stack/card") \
 into tNext

This results in tPrev containing:
/stackFile/stack/card[1]

195

And tNext containing:
/stackFile/stack/card[2]

Searching for a Node
To search for a node based on an attribute, use revXMLMatchingNode.

revXMLMatchingNode(treeID, startNode, childName, \ attributeName, attributeValue,
depth, [caseSensitive])

See above for an explanation of treeID, startNode and depth.

The childName is the name of the children you want to include in the search. If you leave
this blank all children are searched.

The attributeName is the name of the attribute you want to search.

attcributeValue is the search term you want to match.

caseSensitive optionally specifies whether the search should be case sensitive. The
default is false.

Using this function on our example XML file as follows:

put revXMLMatchingNode(106,"/", ,"name", "Hello", -1) \
 into tMatch

This results in tMatch containing:
/stackFile/stack/card[1]/field

Retrieving an Outline of the Tree (or Portion Thereof)
To retrieve the contents of a specified node, use revXMLTree.

revXMLTree(treeID, startNode, nodeDelim, padding, \
 includeChildCount, depth)

See above for an explanation of treeID, startNode, includeChildCount and depth.

The nodeDelim is the delimiter that separates each node in the tree. Use return to retrieve
a list of nodes.

padding is the character to use to indent each level in the tree.

Using this function on our example XML file as follows:

put revXMLTree(106,"/",return,space,true,-1) into tTree

196

This results in tTree containing:
stackFile[1]
 stack[1]
 card[1]
 field[1]
 text[1]
 htmlText[1]
 card[2]

Retrieving the Tree as XML (or Portion Thereof)
To retrieve the tree as XML use revXMLText. Use this function to save the XML to a
file after modifying it.

revXMLText(treeID, startNode, [formatTree])

See above for an explanation of treeID and startNode.

The formatTree specifies whether or not to format the returned tree with return and space
characters to make it easier to read by a human.

Using this function on our example XML file as follows:

ask file "Save XML as:"
put revXMLText(106,"/",true) into URL ("file:" & it)

This results in the file the user specifies containing:
<stackFile>
<stack name="Example" rect="117,109,517,509">
<card>
<field name="Hello" rect="100,100,200,125">
<text>Hello World!</text>
<htmlText><p>Hello World</p></htmlText>
</field>
</card>
<card/>
</stack>
</stackFile>

Validating against a DTD
To check the syntax of an XML file conforms to a DTD use revXMLValidateDTD.
For more information on this function, see the Revolution Dictionary.

Listing all XML Trees in Memory
To generate a list of all XML trees in memory, use revXMLTrees. For more
information on this function, see the Revolution Dictionary.

197

Removing an XML Tree from Memory
To remove an XML tree from memory, use revDeleteXMLTree. To remove all XML
trees from memory, use revDeleteAllXMLTrees. Both functions take a single
parameter – the ID of the tree to be deleted. You should delete a tree when you have
stopped using it. For more information on these functions, see the Revolution Dictionary.

Caution: Once an XML tree has been removed from memory, there is no way to get it
back. Use the revXMLText function to retrieve the contents of the entire tree and save it
first.

6.7.5 The XML Library: Editing XML
This section discusses how to edit XML trees. Before reading this section you should
read the section above on loading, displaying and unloading XML.

Adding a new Child Node
To add a new node use the revAddXMLNode command.

revAddXMLNode treeID, parentNode, nodeName, nodeContents, \
 [location]

See above for an explanation of treeID.

The parentNode is the name of the node you want to add the child to.

The nodeName is the name of the new node to create.

nodeContents is the contents of the new node.

location - optionally specify "before" to place the new child at the start of the child
nodes.

Use this function to add a button to our example XML file as follows:

revAddXMLNode 1, "/stackFile/stack/card/", "button", ""

This results in our tree containing a new button:

<?xml version="1.0" encoding="UTF-8"?>
<!-- This is a comment. -->
<stackFile>
 <stack name="Example" rect="117,109,517,509">
 <card>
 <field name="Hello" rect="100,100,200,125">

198

 <text>Hello World!</text>
 <htmlText><p>Hello World</p></htmlText>
 </field>
 <button></button>
 </card>
 <card/>
 </stack>
</stackFile>

To create another node at the same level as another node, use the revInsertXMLNode
command instead.

Appending XML to a tree
To add a new node use the revAppendXML command.

revAppendXML treeID, parentNode, newXML

See above for an explanation of treeID and parentNode.

The newXML is XML you want to append to the tree.

Moving, Copying or Deleting a Node
To move a node use the revMoveXMLNode command.

revMoveXMLNode treeID, sourceNode, destinationNode \
 [, location] [, relationship]

See above for an explanation of treeID.

The sourceNode is the path to the node you want to move.

The destinationNode is the path to the node you to move to.

The location specifies where the node should be moved to in the list of siblings – it can
be either "before" or "after".

The relationship allows you to specify whether to place the node alongside the
destination as a sibling or below the destination as a child.

To copy a node use revCopyXMLNode.

To delete a node use revDeleteXMLNode.

Putting data into a Node
To put data into a node use the revPutIntoXMLNode command.

199

revPutIntoXMLNode treeID,node,newContents

See above for an explanation of treeID and node.

The newContents is the text that the new node will contain.

Setting an Attribute
To set an attribute use the revSetXMLAttribute command.

revSetXMLAttribute treeID,node,attributeName,newValue

See above for an explanation of treeID and node.

The attributeName is the name of the attribute you want to set the attribute on.

The newValue is the value to set for the attribute.

Using this function to add a "showBorder" property to our field:

revSetXMLAttribute 1, \
 "/stackFile/stack/card/button", "showBorder","true"

The field tag in our tree now looks like this:

<field name="Hello" rect="100,100,200,125" showBorder="true">

Adding a DTD
To add a DTD to the tree, use the revXMLAddDTD command.

revXMLAddDTD treeID,DTDText

See above for an explanation of treeID.

The DTDText is the text of the DTD to add.

6.8 Sorting
Sorting data is a common and fundamental operation. Sorting allows you to display data
in a user-friendly fashion or code a number of algorithms. Revolution's intuitive sort
features give you the power and flexibility to perform any kind of sorting you may
require.

6.8.1 The Sort Container Command: Overview
To sort data, use the sort container command.

sort [{lines | items} of] container [direction] [sortType]
[by sortKey]

200

The container is a field, button, or variable, or the message box.

The direction is either ascending or descending. If you don't specify a direction, the sort
is ascending.

The sortType is one of text, numeric, or dateTime. If you don't specify a sortType, the
sort is by text.

The sortKey is an expression that evaluates to a value for each line or item in the
container. If the sortKey contains a chunk expression, the keyword each indicates that
the chunk expression is evaluated for each line or item. If you don't specify a sortKey, the
entire line (or item) is used as the sortKey.

The following example sorts the lines of a variable alphabetically:

sort lines of field "sample text" ascending text
sort lines of tText descending text

The following example sorts a collection of items numerically:

sort items of field "sample csv" ascending numeric
sort items of tItems descending numeric

6.8.2 The Sort Container Command: Using Sort Keys
The sortKey syntax allows you to sort each line or item based on the results of an
evaluation performed on each line or item.

To sort the lines of a container by a specific item in each line:

sort lines of tContainer by the first item of each
sort lines of tContainer by item 3 of each

The sortKey expression will only be evaluated once for every element that is to be sorted.
This syntax allows a variety of more complex sort operations to be performed.

The following example will extract the minimum and maximum integers present in a list:

set the itemDelimiter to "."
sort lines of fld 1 numeric by char 2 to -1 of the \
 first item of each
put char 2 to -1 of the first item of the first line \
 of fld 1 into tMinimumInteger
put char 2 to -1 of the first item of the last line of \
 fld 1 into tMaximumInteger

Original list: Result:

201

F54.mov
M27.mov
M7.mov
F3.mov

tMinimumInteger is 3
tMaximumInteger is 54

Figure 56 – Results of sort command using sort key

6.8.3 The Sort Container Command: Sorting Randomly
To sort randomly, use the random function to generate a random number as the sortKey
for each line or item, instead of evaluating the line or item's contents. For example:

put the number of lines of tExampleList into \
 tElementCount
sort lines of tExampleList ascending numeric by \
 random(tElementCount)

6.8.4 The Sort Container Command: Stable Sorts – Sorting on
Multiple Keys
To sort a list by multiple criteria you can sort multiple times. This is because Revolution
uses a stable sort, meaning that if two items have the same sort key their relative order in
the output will not change. To perform a stable sort, start with the least significant or
important criteria and work up to the most important or significant. For example:

sort lines of fld 1 ascending numeric by item 2 \
 of each
sort lines of fld 1 ascending text by the \
 first item of each
Original list:

Oliver,1.54
Elanor,5.67
Marcus,8.99
Elanor,6.34
Oliver,8.99
Tim,3.44

Result:

Elanor,5.67
Elanor,6.34
Marcus,8.99
Oliver,1.54
Oliver,8.99
Tim,3.44

Figure 57 – Results of sorting multiple items

Tip: If you have a large data set and want to improve performance by only performing a
single sort, you can construct a sort key that gives the appropriate ordering. In this
example a good way to do that is to use the format function to construct a fixed length
string, one element per sort:

202

Tip: sort lines of fld 1 ascending text by \
format("%-16s%08.2f", item 1 of each, item 2 of each)

Tip: This formats each individual line similar to the following:

Tip: Oliver 00001.54
Elanor 00005.67

Tip: These lines now sort the required way as if the first field (the name) ties, the order is
determined by the second field – due to the use of padding characters making all the
fields the same size.

6.8.5 Sorting Cards
To sort cards, use the sort command.

sort [marked] cards [of stack] [direction] [sortType] by
sortKey

The stack is a reference to any open stack. If you don't specify a stack, the cards of the
current stack are sorted.

The direction is either ascending or descending. If you don't specify a direction, the sort
is ascending.

The sortType is one of text, international, numeric, or dateTime. If you don't specify a
sortType, the sort is by text.

The sortKey is an expression that evaluates to a value for each card in the stack. Any
object references within the sortKey are treated as pertaining to each card being
evaluated, so for example, a reference to a field is evaluated according to that field's
contents on each card. Typically the sort command is used with background fields that
have their sharedText property set to false so that they contain a different value on each
card.

For example to sort cards by the contents of the last name field on each:

sort cards by field "Last Name"

To sort cards by the numeric value in a ZIP Code:

sort cards numeric by field "ZIP code"

Tip: To sort cards by a custom expression that performs a calculation, you can create a
custom function:

203

Tip: sort cards by myFunction() -- uses function below

Tip: function myFunction
 put the number of buttons of this card into tValue
 -- perform any calculation on tValue here
 return tValue
 -- sort will use this value
end myFunction

204

Chapter 7 Programming a User Interface
The user interface for your application is often one of its most important features. In
Chapter 4 we looked at how you build a user interface using Revolution’s tools and
development environment. In this chapter we look at how you can edit, or even build a
user interface programmatically. Everything you can do using the built-in tools you can
also do programmatically. You can even create and modify a user interface at run time in
a standalone application, or provide interactive methods for your users to modify specific
aspects of your application. This set of capabilities allow you to produce applications that
construct their interface using XML files or a custom data structure, programmatically
construct aspects of complex interfaces, modify their look using user specified
parameters, create themed or skinned interface options, build your own interface editing
tools that plug-in to Revolution’s IDE and much more. You can also create custom
objects and attach your own virtual behaviors and custom properties to them. We
recommend you spend a little time becoming familiar with building an interface using the
tools in the development environment before creating or editing an interface
programmatically.

205

7.1 Referring to Objects
In general, you can refer to any object by its name, number, or ID property.

7.1.1 Referring to objects by name
You can refer to an object using its object type followed by its name. For example, to
refer to a button named "OK", use the phrase button "OK":

set the loc of button "OK" to 32,104

To change an object's name, enter a name in the object's property inspector, or use the
set command to change the object's name property:

set the name of field "Old Name" to "New Name"
select after text of field "New Name"

7.1.2 Referring to objects by number
A control's number is its layer on the card, from back to front. A card's number is its
position in the stack. A stack's number is the order of its creation in the stack file. A main
stack's number is always zero.

You can refer to an object using its object type followed by its number. For example, to
refer to the third-from-the-back field on a card, use the phrase field 3:

set the backgroundColor of field 3 to blue

To change the number of a card or control, change the Layer box in the Size & Position
pane of the object's property inspector, or use the set command to change the object's
layer property:

set the layer of field "Backmost" to 1

Tip: New objects are always created at the top layer. To refer to an object you've just
created, use the ordinal last:

Tip: create button
set the name of last button to "My New Button"

7.1.3 Referring to objects by ID
Each object in Revolution has an ID number. The ID property never changes (except for
stack IDs), and is guaranteed unique within the stack: no two objects in the same stack
can have the same ID property.

206

You can refer to an object using its object type, then keyword ID, followed by its ID
number. For example, to refer to a card whose ID property is 1154, use the phrase card
ID 1154:

go to card ID 1154

You cannot change an object's ID property (except for a stack).

Important: Wherever possible, you should name your objects and refer to them by
name instead of using number or ID. Both the number and ID properties will change if
objects are copied and pasted. Additionally, your scripts will rapidly become difficult to
read if there are many ID or numerical references to objects.

7.1.4 Referring to objects by ordinal
You can refer to an object using its object type followed by the ordinal numbers first
through tenth, or the special ordinals middle and last. To refer to a random object,
use the special ordinal any. For example, to refer to the last card in the current stack, use
the special ordinal last:

go to last card

7.1.5 The special descriptor ʻthisʼ
Use the this keyword to indicate the current stack, or the current card of a stack:

set the backgroundColor of this stack to white
send "mouseUp" to this card
set the textFont of this card of stack "Menubar" to "Sans"

7.1.6 Control references
A control is any object that can appear on a card. Fields, buttons, scrollbars, images,
graphics, players, EPS objects, and groups are all controls. Stacks, cards, audio clips, and
video clips are not controls.

You can refer to an object of any of these object types using the word "control", followed
by an ID, name, or number:

hide control ID 2566
send mouseDown to control "My Button"
set the hilite of control 20 to false

If you use a name, as in the expression control "Thing", the reference is to the
first control (with the lowest layer) that has that name.

207

When you refer to a control by number using its object type, the reference is to the Nth
control of that type. For example, the phrase field 1 refers to the lowest field on the
card. This may not be the lowest control, because there may be controls of other types
underneath field 1. However, when you refer to a control by number using the word
control, the reference is to the Nth control of any type. The phrase control 1
refers to the lowest control on the card, which may be of any type.

Tip: To refer to the object underneath the mouse pointer, use the mouseControl
function.

7.1.7 Nested Object References
To refer to an object that belongs to another object, nest the references in the same order
as the object hierarchy. For example, if there is a button called "My Button" on a card
called "My Card", you can refer to the button like this:

show button "My Button" of card "My Card"

You can mix names, numbers, ordinal references, and IDs in a nested object reference,
and you can nest references to whatever depth is required to specify the object. The only
requirement is that the order of references be the same as the order of the object
hierarchy, going from an object to the object that owns it. Here are some examples:

field ID 34 of card "Holder"
player 2 of group "Main" of card ID 20 of stack "Demo"
first card of this stack
stack "Dialog" of stack "Main" -- "Dialog" is a substack

If you don't specify a card in referring to an object that is contained by a card, Revolution
assumes the object is on the current card. If you don't specify a stack, Revolution assumes
the object is in the current stack. You can reference a control in another stack by either of
the following methods:

Use a nested reference that includes the name of the stack:

field 1 of stack "My Stack"
graphic "Outline" of card "Tools" of stack "Some Stack"

Set the defaultStack property to the stack you want to refer to first. The
defaultStack specifies the current stack, so you can refer to any object in the
defaultStack without including a stack name. This example sets a checkbox in the
current stack to have the same setting as a checkbox in another stack called "Other
Stack":

put the defaultStack into savedDefault
-- so you can set it back later

208

set the defaultStack to "Other Stack"
put the hilite of button "Me" into meSetting
-- this button is in "Other Stack"
set the defaultStack to savedDefault
set the hilite of button "Me Too" to meSetting
-- this button is in the original stack

If an object is in a group, you can include or omit a reference to the group in a nested
reference to the object. For example, suppose the current card contains a button called
"Guido", which is part of a group called "Stereotypes". You can refer to the button with
any of the following expressions:

button "Guido"
button "Guido" of card 5
button "Guido" of group "Stereotypes"
button "Guido" of group "Stereotypes" of card 5

If there is no other button named "Guido" on the card, these examples are equivalent. If
there is another button with the same name in another group (or on the card, but not in
any group), you must either specify the group (as in the second and third examples) or
refer to the button by its ID property, to be sure you're referring to the correct button.

7.2 Properties
A property is an attribute of a Revolution object. Each type of object has many built-in
properties, which affect the object's appearance or behavior. You can also define custom
properties for any object, and use them to store any kind of data.

This topic discusses how to use properties, how properties are inherited between objects,
and how to create and switch between collections of property settings.

To fully understand this topic, you should know how to create objects, how to use an
object's property inspector, and how to write short scripts.

7.2.1 Using Object Properties
A property is an attribute of an object, and each object type has its own set of built-in
properties appropriate for that type. An object can be completely described by its built-in
properties; if you could make all the properties of two objects identical, they'd be the
same object. It is thus possible to describe an object entirely as an array of properties, or
to export and import properties using text or XML files. More details on some of the
methods you can use to do this are covered later in this chapter.

Note: Since no two objects can have the same ID property, it's not possible in practice
for two different objects to become the same object, because the ID will always be
different.

209

Built-in properties determine the appearance and behavior of stacks and their contents--
fonts, colors, window types, size and placement, and much more – as well as much of the
behavior of the Revolution application. By changing properties, you can change almost
any aspect of your application. When you combine the ability to change properties with
the ability to create and delete objects programmatically, you can modify every aspect of
your application (subject to any limitations of the license agreement applicable to your
edition of Revolution).

7.2.2 Referring to properties
Property references consist of the word the, the property name, the word of, and a
reference to the object:

the armedIcon of button "My Button"
the borderWidth of field ID 2394
the name of card 1 of stack "My Stack"

Properties are sources of value, so you can get the value of a property by using it in an
expression:

put the height of field "Text" into myVar
put the width of image "My Image" + 17 after field "Values"
if item 1 of the location of me > zero then beep

For example, to use the width property of a button as part of an arithmetic expression,
use a statement like the following:

add the width of button "Cancel" to totalWidths

The value of the property – in this case, the width of the button in pixels – is substituted
for the property reference when the statement is executed.

Tip: To see a list of all the language words (including properties) applicable to a
particular object type, open the Documentation window, click Dictionary, right-click on
the header bar to turn on the object type you want, then sort the list by clicking on that
object header.

7.2.3 Changing properties
To change the value of a property, you use the set command:

set the borderColor of group "My Group" to "red"
set the top of image ID 3461 to zero

You can also see and change many of an object's properties by selecting the object and
choosing Object Inspector. See the chapter Building a User Interface for more details.

210

Most built-in properties affect the appearance or behavior of the object. For example, a
button's height, width, and location are properties of the button. Changing these
properties in a handler causes the button's appearance to change. Conversely, dragging or
resizing the button changes the related properties.

Read-only properties
Some properties can be read, but not set. These are called read-only properties. Trying to
set a read-only property causes an execution error.

To find out whether a property is read-only, check its entry in the Revolution Dictionary.

Changing a part of a property
Properties are not containers, so you cannot use a chunk expression to change a part of
the property. However, you can use a chunk expression to examine part of a property. For
example, you cannot set line 1 of a property to a new value: you must set the whole
property. For more details see the section Chunk Expressions in the chapter on
Processing Text and Data.

To change one part of a property, first put the property value into a variable, change the
required part of the variable, then set the property back to the new variable contents:

put the rect of me into tempRect
put "10" into item 2 of tempRect
set the rect of me to tempRect

Custom properties and virtual properties
A custom property is a property that you define. You can create as many custom
properties for an object as you want, and put any kind of data into them, including binary
data or array data. You can even store a file in a custom property.

Virtual properties are custom properties that trigger a custom script action when you
change them, allowing you to implement "virtual" object behaviors.

Custom properties and virtual properties are covered in their respective sections later in
this chapter.

7.2.4 Property Inheritance
Most properties are specific to the object they are part of, and affect only that object.

However, some properties of an object, such as its color and text font, take on the settings
of the object above it in the object hierarchy. For example, if a field's background color
property is not specified (that is, if its backgroundColor property is empty), the field
takes on the background color of the card that owns it. If no background color is specified
for the card either, the stack's background color is used, and so on. This means you can
set a background color for a stack, and every object in it will automatically use that
background color, without your having to set it for each object.

211

This process of first checking the object, then the object's owner, then the object that
owns that object, and so on, is called inheritance of properties. Each object inherits the
background color of the object above it in the hierarchy. Similar inheritance rules apply
to the foregroundColor, topColor, bottomColor, borderColor,
shadowColor, and focusColor properties, to their corresponding pattern properties,
and to the textFont, textSize, and textStyle properties.

7.2.5 Overriding inheritance
Inheritance is used to determine an object's appearance only if the object itself has no
setting for the property. If an inheritable property of an object is not empty, that setting
overrides any setting the object might inherit from an object above it in the object
hierarchy.

For example, if a button's backgroundColor property is set to a color reference
instead of being empty, the button uses that background color, regardless of the button's
owners. If the object has a color of its own, that color is always used.

The effective keyword
If an inheritable property of an object is empty, you can't simply check the property to
find out what color or font settings the object displays. In this case, use the effective
keyword to obtain the inherited setting of the property. The effective keyword
searches the object's owners, if necessary, to find out what setting is actually used.

For example, suppose you have a field whose textFont property is empty. The
textFont of the card that the field is on is set to "Helvetica", so the field inherits this
setting and displays its text in the Helvetica font. To find out what font the field is using,
use the expression the effective textFont:

get the textFont of field "My Field" -- empty
get the effective textFont of field "My Field" -- Helvetica

You can use the effective keyword with any inherited property.

7.3 Global Properties
Revolution also has global properties, which affect the overall behavior of the
application. Global properties are accessed and changed the same way as object
properties. They do not belong to any particular object, but otherwise they behave like
object properties.

Tip: To see a list of all global properties, open the Message Box, and choose the Global
Properties icon – the third icon from the left at the top of the window. To see a list of all
properties in the language, including both global and object properties, use the
propertyNames global property.

212

A few properties are both global and object properties. For example, the
paintCompression is a global property, and also a property of images. For these
properties, the global setting is separate from the setting for an individual object.

Some other global properties are affected by system settings. For example, the default
value of the playLoudness property is set by the operating system's sound volume
setting.

7.3.1 Referring to global properties
You refer to global properties using the and the property name:

the defaultFolder
the emacsKeyBindings
the fileType

Since global properties apply to the whole application, you don't include an object
reference when referring to them.

Global properties are sources of value, so you can get the value of a global property by
using it in an expression:

get the stacksInUse
put the recentNames into field "Recent Cards"
if the ftpProxy is empty then exit setMyProxy

7.3.2 Changing global properties
To change a global property, you use the set command, in the same way as for object
properties:

set the itemDelimiter to "/"
set the grid to false
set the idleTicks to 10

Some global properties can be changed by other commands. For example, the
lockScreen property can either be set directly, or changed using the lock screen
and unlock screen commands. The following two statements are equivalent:

set the lockScreen to false -- does the same thing as...
unlock screen

7.3.3 Saving and restoring global properties
Object properties are part of an object, so they are saved when the stack containing their
object is saved. Global properties, however, are not associated with any object, so they
are not saved with a stack. If you change the value of a global property, the change is lost
when you quit the application.

213

If you want to use the same setting of a global property during a different session of your
application, you must save the setting – in a Preferences file, in a custom property, or
elsewhere in a saved file – and restore it when your application starts up.

7.4 Text Related Properties
Normally, properties are applied only to objects or, in the case of global properties, to the
entire application. However, a few properties also apply to chunks in a field or to single
characters in a field.

7.4.1 Text style properties
Certain text-related properties can be applied either to an entire field or to a chunk of a
field:

set the textFont of word 3 of field "My Field" to "Courier"
set the foregroundColor of line 1 of field 2 to "green"
if the textStyle of the clickChunk is "bold" then beep

The following field properties can be applied to either an entire field or to a chunk of the
field:

textFont, textStyle, and textSize
textShift
backgroundColor and foregroundColor
backgroundPattern and foregroundPattern (Unix systems)

Each chunk of a field inherits these properties from the field, in the same way that fields
inherit from their owners. For example, if a word's textFont property is empty, the
word is displayed in the field's font. But if you set the word's textFont to another font
name, that word – and only that word – is displayed in its own font.

To find the text style of a chunk in a field, whether that chunk uses its own styles or
inherits them from the field, use the effective keyword:

get the effective textFont of word 3 of field ID 2355
answer the effective backgroundColor of char 2 to 7 \
 of field "My Field"

Tip: If a chunk expression includes more than one style, the corresponding property for
that chunk reports "mixed". For example, if the first line of a field has a textSize of "12",
and the second line has a textSize of "24", an expression like the textSize of line 1 to 2 of
field "My Field" reports "mixed".

214

7.4.2 Formatted text properties
The htmlText, RTFText, and unicodeText properties of a chunk are equal to the
text of that chunk, along with the formatting information that's appropriate for the
property.

For example, if a field contains the text "This is a test.", and the word "is" is boldfaced,
the htmlText of word 2 reports "is".

For more information on these properties see the chapter on Processing Text and Data, as
well as the individual entries for these properties in the Revolution Dictionary.

The formattedRect and related properties
The formattedRect property (along with the formattedWidth,
formattedHeight, formattedLeft, and formattedTop) reports the position
of a chunk of text in a field. These properties are read-only.

The formattedRect, formattedLeft, and formattedTop properties can be
used for a chunk of a field, but not the entire field. The formattedWidth and
formattedHeight apply to both fields and chunks of text in a field.

The imageSource, linkText, and visited properties
The imageSource of a character specifies an image to be substituted for that character
when the field is displayed. You use the imageSource to display images inside fields:

set the imageSource of char 17 of field 1 to 49232
set the imageSource of char thisChar of field \
 "My Field" to "http://www.example.com/banner.jpg"

The linkText property of a chunk lets you associate hidden text with part of a field's
text. You can use the linkText in a linkClicked handler to specify the destination
of a hyperlink, or for any other purpose.

The visited property specifies whether you have clicked on a text group during the
current session. You can get the visited property for any chunk in a field, but it is
meaningless unless the chunk's textStyle includes "link".

The imageSource, linkText, and visited properties are the only properties that
can be set to a chunk of a field, but not to the entire field or any other object. Because
they are applied to text in fields, they are listed as field properties in the Revolution
Dictionary.

7.5 Creating and Deleting Objects
Revolution allows you to create and delete objects programmatically. You may optionally
specify all the properties for a new object before creating it.

215

7.5.1 The Create Object Command
You use the create command to create a new object.

create [invisible] type [name] [in group]

The type is any control that can be on a card: field, button, image, scrollbar, graphic,
player, or EPS.

The name is the name of the newly created object. If you don't specify a name, the object
is created with a default name.

The group is any group that's on the current card. If you specify a group, the new object
is a member of the group, and exists on each card that has the group. If you don't specify
a group, the object is created on the current card and appears only on that card.

create button "Click Me"
create invisible field in first group

For more details, see the create command in the Revolution Dictionary. For details on
how to specify the properties of an object before creating it, see the section on Creating
Objects Off-screen Using Template Objects, below.

7.5.2 The Delete Object Command
You can use the delete command to remove objects from the stack.

delete {object}

The object is any available object.

delete this card
delete button "New Button"

For more details, see the delete command in the Revolution Dictionary.

7.5.3 Creating Objects Off-screen Using Template Objects
Revolution uses template objects to allow you to specify the properties for an object
before it is created. The template objects are off-screen models – there is one for each
possible type of object, e.g. button, field, graphic, etc.

If you need to create a new object and then set some properties on the object, it is more
efficient to make the changes to the template object, then create the object. Because the
object can be created with all of its properties set correctly, there is no need to lock the
screen and update or reposition the object after creating it. For example, the Revolution
development environment uses the template objects internally to create new objects from
the main tool palette.

216

You set properties on template objects in the same way you set properties on normal
objects.

set the {property} of the template{Objecttype} to {value}

For example, to create a button with the name "Hello World", positioned at 100,100:

set the name of the templateButton to "Hello World"
set the location of the templateButton to 100,100
create button

When you have used the templateObject to create a new object, you should reset it before
using it again. Resetting the templateObject sets all off its properties back to defaults.

reset the template[Objecttype]

For example, to reset the templateButton:

reset the templateButton

For more details on the template objects, search the Revolution Dictionary for "template".

7.6 Property Arrays using the Properties Property
In addition to retrieving individual object properties, you can retrieve or set an entire set
as an array using the properties property. You can use this to edit, copy, export or
import properties.

set the properties of object to propertiesArray
put the properties of object into propertiesArray

The properties of an object is an array containing that object's significant built-in
properties.

put the properties of button 1 into myArray
set the properties of last player to the properties \
 of player "Example"

Tip: This example handler shows you how to write the properties of an object to a text
file.

Tip: on mouseUp
 put the properties of button 1 into tPropertiesArray
 combine tPropertiesArray using return and "|"
 ask file "Save properties as:"
 if it is not empty then put tPropertiesArray into \

217

 URL ("file:" & it)
end mouseUp

Tip: In this example, each property name will be written followed by the "|" character
and the property value and then a return character.

For more details, see the properties property in the Revolution Dictionary.

7.7 Property Profiles
A property profile is a collection of object property settings, which is stored as a set. A
profile for an object can contain settings for almost any properties of the object.

You can include values for most built-in properties in a profile, and create as many
different property profiles as you need for any object. Once you've created a profile, you
can switch the object to the profile to change all the property values that are defined in
the profile.

For example, suppose you create a property profile for a field that includes settings for
the field's color properties. When you switch to that profile, the field's colors change,
while all other properties (not included in the profile) remain the same.

Use property profiles when you want to:
Create "skins" for your application
Display your application in different languages
Present different levels--"novice","expert", and so on
Use different user-interface standards for different platforms

For details on how to create property profiles using the IDE, see the section on Property
Profiles in the chapter Building a User Interface.

7.7.1 Profile names
Profile names follow the same rules as variable names. A profile name must be a single
word, consisting of letters, digits, and underscores, and must start with either a letter or
an underscore.

Tip: If you want to use a single command to switch several objects to a particular profile,
give the profile the same name for each of the objects it applies to.

7.7.2 The master profile
Every object has a master profile that holds the default settings for all its properties. If
you don't set an object's profile, the master profile is used. When you create a new
profile, you can change settings for various properties to make them different from the
master profile's settings.

218

If you don't specify a property setting in a profile, the master profile's setting is used, so
you don't have to specify all properties of an object when you create a profile--only the
ones you want to change.

By default, the master profile is named "Master". You can change the master profile's
name in the Property Profiles pane of the Preferences window.

7.7.3 Switching between profiles
Switching a single object
To switch an object's profile, you can use either the object's property inspector or the
revProfile property.

set the revProfile of player "My Player" to "MyProfile"

Switching all the objects on a card
To switch the profiles of all the objects on a card, use the revSetCardProfile
command:

revSetCardProfile "MyProfile","My Stack"

The statement above sets the profile of all objects on the current card of the stack named
"My Stack". (Although the revSetCardProfile command changes a card, you
specify a stack name, not a card name.)

If an object on the card does not have a profile with the specified name, the object is left
untouched.

Switching all the objects in a stack
To switch the profiles of all the objects in a stack, use the revSetStackProfile
command:

revSetStackProfile "MyProfile","My Stack"

The statement above sets the profile of all objects in the stack named "My Stack".

If an object in the stack does not have a profile with the specified name, the object is left
untouched.

Switching all the objects in a stack file
To switch the profiles of all the objects in every stack in a stack file, use the
revSetStackFileProfile command:

revSetStackFileProfile "MyProfile","My Stack"

The statement above sets the profile of all objects in the stack named "My Stack", along
with any other stacks in the same stack file.

219

If an object in any of the stacks does not have a profile with the specified name, the
object is left untouched.

7.7.4 Creating a profile in a handler
In addition to creating property profiles in the property inspector, you can create a profile
in a handler.

To enable creating profiles, check the "Create profiles automatically" box in the
"Property Profiles" pane of the Preferences window. If this box is checked, setting the
revProfile property of an object automatically creates the profile.

This ability is particularly useful if you want to create a number of profiles, as shown in
the following example:

on mouseUp
 -- creates a profile for each card in the stack
 repeat with thisCard = 1 to the number of cards
 set the revProfile of card x to "myNewProfile"
 end repeat
end mouseUp

The handler above creates a profile called "myNewProfile" for all the cards in the current
stack.

In order for this handler to work, the "Create profiles automatically" option in the
"Property Profiles" pane of the Preferences window must be turned on.

You can control this behavior either in Preferences window or using the
gRevProfileReadOnly keyword. If you don't want to save property changes when
switching profiles, do one of the following:

Set the gRevProfileReadOnly variable to true:

global gRevProfileReadOnly
put true into gRevProfileReadOnly

In the "Property Profiles" pane of the Preferences window, uncheck the box labeled
"Don't save changes in profile".

The two methods of changing this setting are equivalent: changing the
gRevProfileReadOnly variable also changes the preference setting, and vice versa.

For more details, see gRevProfileReadOnly in the Revolution Dictionary.

220

7.7.5 Adding profile settings in a handler
You can add a property setting to a profile by switching to the profile, then setting the
property:

set the revProfile of button 1 to "MyProfile"
set the foregroundColor of button 1 to "red"
set the revProfile of button 1 to "Master"

By default, if you change a property and then switch profiles, the property you changed
and its current setting is saved with the profile.

7.8 Custom Properties
A custom property is a property that you create for an object, in addition to its built-in
properties. You can define custom properties for any object, and use them to store any
kind of data.

This topic discusses how to create and use custom properties, and how to organize
custom properties into sets (or arrays). The following section covers how to create virtual
properties and use getProp and setProp handlers to handle custom property
requests.

7.8.1 Using Custom Properties
A custom property is a property that you define. You can create as many custom
properties for an object as you want, and put any kind of data into them (even binary
data). You can even store a file in a custom property.

Use a custom property when you want to:

• associate data with a specific object
• save the data with the object in the stack file
• access the data quickly

7.8.2 Creating a Custom Property
You create a custom property by setting the new property to a value. If you set a custom
property that doesn't exist, Revolution automatically creates the custom property and sets
it to the requested value.

This means that you can create a custom property in a handler or the message box, simply
by using the set command. The following statement creates a custom property called
"endingTime" for a button:

set the endingTime of button "Session" to the long time

You can create custom properties for any object. However, you cannot create global
custom properties, or custom properties for a chunk of text in a field. Unlike some built-
in properties, a custom property applies only to an object.

221

Important: Each object can have its own custom properties, and custom properties are
not shared between objects. Creating a custom property for one object does not create it
for other objects.

7.8.3 The Content of a Custom Property
You set the value of a custom property by using its property name together with the set
command, in the same way you set built-in properties:

set the myCustomProperty of button 1 to false

You can see and change all of an object's custom properties in the Custom Properties
pane of the object's property inspector: click the custom property you want to change,
then enter the new value.

Changing a part of a property
Like built-in properties, custom properties are not containers, so you cannot use a chunk
expression to change a part of the custom property. Instead, you put the property's value
into a variable and change the variable, then set the custom property back to the new
variable contents:

put the lastCall of this card into myVar
put "March" into word 3 of myVar
set the lastCall of thisCard to myVar

7.8.4 Custom Property Names
The name of a custom property must consist of a single word and may contain any
combination of letters, digits, and underscores (_). The first character must be either a
letter or an underscore.

Avoid giving a custom property the same name as a variable. If you refer to a custom
property in a handler, and there is a variable by the same name, Revolution uses the
contents of the variable as the name of the custom property. This usually causes
unexpected results.

Important: Custom property names beginning with "rev" are reserved for Revolution's
own custom properties. Naming a custom property with a reserved name may produce
unexpected results when working in the development environment.

7.8.5 Referring to Custom Properties
Custom property references look just like built-in property references: the word the, the
property name, the word of, and a reference to the object.

222

For example, to use a custom property called "lastCall" that belongs to a card, use a
statement like the following:

put the lastCall of this card into field "Date"

Like built-in properties, custom properties are sources of value, so you can get the value
of a custom property by using it in an expression. The property's value is substituted for
the property reference when the statement is executed. For example, if the card's
"lastCall" custom property is "Today", the example statement above puts the string
"Today" into the "Date" field.

7.8.6 Nonexistent Custom Properties
Custom properties that don't exist evaluate to empty. For example, if the current card
doesn't have a custom property called "astCall", the following statement empties the
field:

put the lastCall of this card into field "Date" – empty

Note: Referring to a nonexistent custom property does not cause a script error. This
means that if you misspell a custom property name in a handler, you won't get an error
message, so you might not notice the problem right away.

7.8.7 Finding out Whether a Custom Property Exists
The customKeys property of an object lists the object's custom properties, one per line:

put the customKeys of button 1 into field "Custom Props"

To find out whether a custom property for an object exists, you check whether it's listed
in the object's customKeys. The following statement checks whether a player has a
custom property called "doTellAll":

if "doTellAll" is among the lines of the customKeys \
 of player "My Player" then...

You can also look in the Custom Properties pane of the object's property inspector, which
lists the custom properties. See the chapter on Building a User Interface for more details.

7.8.8 Custom Properties & Converting Text Between Platforms
When you move a stack developed on a Mac OS or OS X system to a Windows or Unix
system (or vice versa), Revolution automatically translates text in fields and scripts into
the appropriate character set. However, text in custom properties is not converted
between the ISO and Macintosh character sets. This is because custom properties can
contain binary data as well as text, and converting them would garble the data.

223

Characters whose ASCII value is between 128 and 255, such as curved quotes and
accented characters, do not have the same ASCII value in the Mac OS character set and
the ISO 8859-1 character set used on Unix and Windows systems. If such a character is
in a field, it is automatically translated, but it's not translated if it's in a custom property.

Because of this, if your stack displays custom properties to the user--for example, if the
stack puts a custom property into a field--and if the text contains special characters, it
may be displayed incorrectly if you move the stack between platforms. To avoid this
problem, use one of these methods:

Before displaying the custom property, convert it to the appropriate character set using
the macToISO or ISOToMac function. The following example shows how to convert a
custom property that was created on a Mac OS system, when the property is displayed on
a Unix or Windows system:

if the platform is "MacOS" then
 answer the myPrompt of button 1
else
 answer macToISO(the myPrompt of button 1)
end if

Instead of storing the custom property as text, store it as HTML, using the HTMLText
property of fields:

set the myProp of this card to the HTMLText of field 1

Because the HTMLText property encodes special characters as entities, it ensures that
the custom property does not contain any special characters--only the platform-
independent encodings for them. You can then set a field's HTMLText to the contents of
the custom property to display it:

set the HTMLText of field "Display" \
 to the myProp of this card

7.8.9 Storing a file in a custom property
You can use a URL to store a file's content in a custom property:

set the myStoredFile of stack "My Stack" \
 to URL "binfile:mypicture.jpg"

You restore the file by putting the custom property's value into a URL:

put the myStoredFile of stack "My Stack" \
 into URL "binfile:mypicture.jpg"

224

Because a custom property can hold any kind of data, you can store either text files or
binary files in a custom property. You can use this capability to bundle media files or
other files in your stack.

Many Mac OS Classic files have a resource fork. To store and restore such a file, you can
use the resfile URL scheme to store the content of the resource fork separately.

Tip: To save space, compress the file before storing it:

Tip: set the myStoredFile of stack "My Stack" \
 to compress(URL "binfile:mypicture.jpg")

Tip: When restoring the file, decompress it first:

Tip: put decompress(the myStoredFile of stack "My Stack") \
 into URL "binfile:mypicture.jpg"

For more information about using URL containers, see the chapter on Working with
Files, URLs and Sockets.

7.8.10 Deleting a custom property
As described above, the customKeys property of an object is a list of the object's
custom properties. You can set the customKeys of an object to control which custom
properties it has.

In Revolution, there is no command to delete a custom property. Instead, you place all the
custom property names in a variable, delete the one you don't want from that variable,
and set the object's customKeys back to the modified contents of the variable. This
removes the custom property whose name you deleted.

For example, the following statements delete a custom property called
"propertyToRemove" from the button "My Button":

get the customKeys of button "My Button"
set the wholeMatches to true
delete line lineOffset("propertyToRemove",it) of it
set the customKeys of button "My Button" to it

You can also delete a custom property in the Custom Properties pane of the object's
Property Inspector. Select the property's name and click the Delete button to remove it.

7.9 Custom Property Sets
Custom properties can be organized into custom property sets – or arrays of custom
properties. A custom property set is a group of custom properties that has a name you
specify.

225

When you refer to a custom property, Revolution looks for that property in the object's
currently-active custom property set. When you create or set a custom property,
Revolution creates it in the currently-active custom property set, or sets the value of that
property in the currently-active set. One custom property set is active at any one time, but
you can use array notation to get or set custom properties in sets other than the current
set.

The examples in the previous section assume that you haven't created any custom
property sets. If you create a custom property without creating a custom property set for
it, as shown in the previous examples, the new custom property becomes part of the
object's default custom property set.

7.9.1 Creating custom property sets
To make a custom property set active, you set the object's customPropertySet
property to the set you want to use. As with custom properties and local variables, if the
custom property set you specify doesn't exist, Revolution automatically creates it, so you
can create a custom property set for an object by simply switching to that set.

The following statement creates a custom property set called "Alternate" for an object,
and makes it the active set:

set the customPropertySet of the target to "Alternate"

The statement above creates the custom property set.

You can also view, create, and delete custom property sets in the Custom pane of the
object's property inspector.

You can list all the custom property sets of an object using its customPropertySets
property.

As with custom properties, you can create custom property sets for any object. But you
can't create global custom property sets, or custom property sets for a chunk of a field.

7.9.2 Custom property set names
The names of custom property sets should consist of a single word, with any combination
of letters, digits, and underscores (_). The first character should be either a letter or an
underscore.

It is possible to create a custom property set with a name that has more than one word, or
that otherwise doesn't conform to these guidelines. However, this is not recommended,
because such a custom property set can't be used with the array notation described below.

226

Note: When you use the Custom Properties pane in the property inspector to create a
custom property set, the pane restricts you to these guidelines.

7.9.3 Referring to custom property sets
To switch the active custom property set, set the object's customPropertySet property to
the name of the set you want to use:

set the customPropertySet of button 3 to "Spanish"

Any references to custom property refer to the current custom property set. For example,
suppose you have two custom property sets named "Spanish" and "French", and the
French set includes a custom property called "Paris" while the Spanish set does not. If
you switch to the Spanish set, the customKeys of the object does not include "Paris",
because the current custom property set doesn't include that property.

If you refer to a custom property that isn't in the current set, the reference evaluates to
empty. If you set a custom property that isn't in the current set, the custom property is
created in the set. You can have two custom properties with the same name in different
custom property sets, and they don't affect each other: changing one does not change the
other.

The customProperties property of an object includes only the custom properties
that are in the current custom property set. To specify the customProperties of a
particular custom property set, you include the set's name in square brackets:

put the customProperties[mySet] of this card into myArray

7.9.4 Finding out whether a custom property set exists
The customPropertySets property of an object lists the object's custom property
sets, one per line:

answer the customPropertySets of field "My Field"

To find out whether a custom property set for an object exists, you check whether it's
listed in the object's customPropertySets. The following statement checks whether
an image has a custom property set called "Spanish":

if "Spanish" is among the lines of the \
 customPropertySets of image ID 23945 then...

You can also look in the Custom Properties pane of the object's property inspector, which
lists the custom property sets in the "Set" menu halfway down the pane.

227

7.9.5 The default custom property set
An object's default custom property set is the set that's active if you haven't used the
customPropertySet property to switch to another set. Every object has a default
custom property set; you don't need to create it.

If you create a custom property without first switching to a custom property set – as in
the earlier examples in this topic – the custom property is created in the default set. If you
don't set the customPropertySet property, all your custom properties are created in
the default set.

The default custom property set has no name of its own, and is not listed in the object's
customPropertySets property. To switch from another set to the default set, you set
the object's customPropertySet to empty:

set the customPropertySet of the target to empty

7.9.6 Using multiple custom property sets
Since only one custom property set can be active at a time, you can create separate
custom properties with the same name but different values in different sets. Which value
you get depends on which custom property set is currently active.

A translation example
Suppose your stack uses several custom properties that hold strings in English, to be
displayed to the user by various commands. Your stack might contain a statement such as
this:

answer the standardErrorPrompt of this stack

The statement above displays the contents of the custom property called
"standardErrorPrompt" in a dialog box.

Suppose you decide you want to translate your application into French. To do this, you
make your original set of English custom properties into a custom property set (which
you might call "myEnglishStrings"), and create a new set called "myFrenchStrings" to
hold the translated properties.

Each set has the same-named properties, but the values in one set are in French and the
other in English. You switch between the sets depending on what language the user
chooses. The statement:

answer the standardErrorPrompt of this stack

provides either the English or French, depending on which custom property set is active:
"myEnglishStrings" or "myFrenchStrings".

228

7.9.7 Copying custom properties between property sets
When it's created, a custom property set is empty, that is, there aren't any custom
properties in it. You put custom properties into a new custom property set by creating the
custom properties while the set is active:

-- create new set and make it active:
set the customPropertySet of button 1 to "MyNewSet"
-- now create a new custom property in the current set:
set the myCustomProp of button 1 to true

You can also use the customProperties property (which was discussed earlier in
this topic) to copy custom properties between sets. For example, suppose you have
created a full set of custom properties in a custom property set called
"myEnglishStrings", and you want to copy them to a new custom property set,
"frenchStrings", so you can translate them easily. The following statements create the
new custom property set, then copy all the properties from the old set to the new one:

-- create the new set:
set the customPropertySet of this stack to "frenchStrings"
-- copy the properties in the English set to the new set:
set the customProperties["frenchStrings "] of this \
 stack to the customProperties["frenchStrings "] \
 of this stack

Caution: Custom property sets in the development environment

The Revolution development environment uses custom properties to create much of its
own user interface. All these properties are stored in custom property sets whose names
start with "cRev".

If you're creating custom properties, but not organizing them into your own custom
property sets, you don't need to worry about Revolution's custom properties. Unless you
change an object's customPropertySet, your handlers will never interact with
them.

However, if you are using custom property sets--for example, if you have a repeat
loop that goes through all of an object's custom property sets--be sure to skip any whose
names start with "cRev". This ensures that you won't accidentally interfere with any of
Revolution's reserved custom properties.

7.9.8 Arrays, custom properties, and custom property sets
All the custom properties in a custom property set form an array. The array's name is the
custom property set name, and the elements of the array are the individual custom
properties in that custom property set.

229

Referring to custom properties using array notation
You can use array notation to refer to custom properties in any custom property set. This
lets you get and set any custom property, even if it's not in the current set, without
changing the current set.

For example, suppose a button has a custom property named "myProp" which is in a
custom property set called "mySet". If "mySet" is the current set, you can refer to the
"myProp" property like this:

get the myProp of button 1
set the myProp of the target to 20

But you can also use array notation to refer to the "myProp" property, even if "mySet" is
not the current set. To refer to this custom property regardless of which custom property
set is active, use statements like the following:

get the mySet["myProp"] of button 1
set the mySet["myProp"] of the target to 20

Note: Because the default custom property set has no name, you cannot use array
notation to refer to a custom property in the default set.

Storing an array in a custom property set
It is not possible to store an array in a single custom property, because each custom
property set is already an array of the custom properties in the set.

However, if you store a set of custom properties in a custom property set, the set can be
used just like an array. You can think of the custom property set as though it were a
single custom property, and the properties in the set as the individual elements of the
array.

To store an array variable as a custom property set, use a statement like the following:

set the customProperties["myProperty"] of me to theArray

The statement above creates a custom property set called "myProperty", and stores each
element in "theArray" as a custom property in the new set. To retrieve a single element of
the array, use a statement like this:

get the myProperty["myElement"] of field "Example"

7.9.9 Deleting a custom property set
As described above, the customPropertySets property of an object is a list of the
object's custom property sets. You can set the customPropertySets of an object to
control which custom property sets it has.

230

In Revolution, there is no command to delete a custom property set. Instead, you place all
the custom property set names in a variable, delete the one you don't want from that
variable, and set the customPropertySets back to the modified contents of the
variable. This removes the custom property set whose name you deleted.

For example, the following statements delete a custom property set called "mySet" from
the button "My Button":

get the customPropertySets of button "My Button"
set the wholeMatches to true
delete line lineOffset("mySet",it) of it
set the customPropertySets of button "My Button" to it

You can also delete a custom property set in the Custom Properties pane of the object's
property inspector. Select the set's name from the Set menu, then click the Delete button
to remove it.

7.10 Attaching Handlers to Custom Properties
When you change a custom property, Revolution sends a setProp trigger to the object
whose property is being changed. You can write a setProp handler to trap this trigger
and respond to the attempt to change the property. Like a message, this trigger uses the
message path, so you can place the setProp handler anywhere in the object's message
path.

Similarly, when you get the value of a custom property, Revolution sends a getProp
call to the object whose property is being queried. You can write a getProp handler to
reply to the request for information. Like a function call, the getProp call also traverses
the message path.

Using getProp and setProp handlers, you can:

• validate a custom property's value before setting it
• report a custom property's value in a format other than what it's stored as
• ensure the integrity of a collection of properties by setting them all at once
• change an object's behavior when a custom property is changed

Note: setProp triggers and getProp calls are not sent when a built-in property is
changed or accessed. They apply only to custom properties.

7.10.1 Responding to changing a custom property
When you use the set command to change a custom property, Revolution sends a
setProp trigger to the object whose property is being changed.

231

A setProp trigger acts very much like a message does. It is sent to a particular object.
If that object's script contains a setProp handler for the property, the handler is
executed; otherwise, the trigger travels along the message path until it finds a handler for
the property. If it reaches the end of the message path without being trapped, the
setProp trigger sets the custom property to its new value. For more information about
the message path, see the section on the Message Path.

You can include as many setProp handlers in a script for as many different custom
properties as you need.

7.10.2 The structure of a setProp handler
Unlike a message handler, a setProp handler begins with the word setProp instead of
the word on. This is followed by the handler's name (which is the same as the name of
the custom property) and a parameter that holds the property's new value. A setProp
handler, like all handlers, ends with the word "end" followed by the handler's name.

The following example shows a setProp handler for a custom property named
"percentUsed", and can be placed in the script of the object whose custom property it is:

setProp percentUsed newAmount
 -- responds to setting the percentUsed property
 if newAmount is not a number \
 or newAmount < zero or newAmount > 100 then
 beep 2
 exit percentUsed
 end if
 pass percentUsed
end percentUsed

When you set the "percentUsed" custom property, the "percentUsed" handler is executed:

set the percentUsed of scrollbar "Progress" to 90

When this statement is executed, Revolution sends a setProp trigger to the scrollbar.
The new value of 90 is placed in the newAmount parameter. The handler makes sure that
the new value is in the range 0–100; if not, it beeps and exits the handler, preventing the
property from being set.

For more details about the setProp control structure, see setProp in the Revolution
Dictionary.

Passing the setProp trigger
When the setProp trigger reaches the engine--the last stop in the message path--the
custom property is set. If the trigger is trapped and doesn't reach the engine, the custom
property is not set.

232

To let a trigger pass further along the message path, use the pass control structure. The
pass control structure stops the current handler and sends the trigger on to the next object
in the message path, just as though the object didn't have a handler for the custom
property.

In the "percentUsed" handler above, if the newAmount is out of range, the handler uses
the exit control structure to halt; otherwise, it executes the pass control structure. If the
newAmount is in the right range, the pass control structure lets the property be set.
Otherwise, since the trigger is not passed, it never reaches the engine, so the property is
not changed.

You can use this capability to check the value of any custom property before allowing it
to be set. For example, if a custom property is supposed to be boolean (true or false), a
setProp handler can trap the trigger if the value is anything but true or false:

setProp myBoolean newValue
 if newValue is true or newValue is false
 then pass myBoolean
exit myBoolean

Using the message path with a setProp trigger
Because setProp triggers use the message path, a single object can receive the
setProp triggers for all the objects it owns. For example, setProp triggers for all
controls on a card are sent to the card, if the control's script has no handler for that
property. You can take advantage of the message path to implement the same setProp
behavior for objects that all have the same custom property.

Caution: If a setProp handler sets its custom property, for an object that has that
setProp handler in its message path, a runaway recursion will result. To avoid this
problem, set the lockMessages property to true before setting the custom property.

For example, suppose that all the cards in your stack have a custom property named
"lastChanged". Instead of putting a setProp handler for this property in the script of each
card, you can put a single handler in the stack script:

setProp lastChanged newDate
 convert newDate to seconds
 lock messages -- prevent recursion
 set the lastChanged of the target to newDate
 unlock messages
end lastChanged

233

Note: To refer to the object whose property is being set, use the target function. The
target refers to the object that first received the setProp trigger--the object whose
custom property is being set--even if the handler being executed is in the script of another
object.

Setting properties within a setProp handler
In the "lastChanged" example in the box above, the handler sets the custom property
directly, instead of simply passing the setProp trigger. You must use this method if the
handler makes a change to the property's value, because the pass control structure
simply passes on the original value of the property.

Important: If you use the set command within a setProp handler to set the same
custom property for the current object, no setProp trigger is sent to the target object.
(This is to avoid runaway recursion, where the setProp handler triggers itself.) Setting
a different custom property sends a setProp trigger. So does setting the handler's
custom property for an object other than the one whose script contains the setProp
handler.

Using this method, you can not only check the value of a property, and allow it to be set
only if it's in range, you can also change the value so that it is in the correct range, has the
correct format, and so on.

The following example is similar to the "percentUsed" handler above, but instead of
beeping if the newAmount is out of range, it forces the new value into the range 0–100:

setProp percentUsed newAmount
 set the percentUsed of the target to \
 max(zero,min(100,newAmount))
end percentUsed

Nonexistent properties
If the custom property specified by a setProp handler doesn't exist, the setProp handler is
still executed when a handler sets the property. If the handler passes the setProp
trigger, the custom property is created.

Custom property sets and setProp handlers
A setProp handler for a custom property set behaves differently from a setProp handler
for a custom property that's in the default set.

When you set a custom property in a custom property set, the setProp trigger is named
for the set, not the property. The property name is passed in a parameter using a special
notation. This means that, for custom properties in a set, you write a single setProp
handler for the set, rather than one for each individual property.

234

The following example handles setProp triggers for all custom properties in a custom
property set called myFrenchStrings, which contains custom properties named
standardErrorPrompt, filePrompt, and perhaps other custom properties:

setProp myFrenchStrings[myPropertyName] newValue
 -- The myPropertyName parameter contains the name of
 -- the property that's being set
 switch myPropertyName
 case "standardErrorPrompt"
 set the myFrenchStrings["standardErrorPrompt"] \
 of the target to return & newValue & return
 exit myFrenchStrings
 break
 case "filePrompt"
 set the myFrenchStrings["filePrompt"] \
 of the target to return& newValue & return
 exit myFrenchStrings
 break
 default
 pass myFrenchStrings
 end switch
end myFrenchStrings

As you can see from the exit, pass, and end control structures, the name of this
setProp handler is the same as the name of the custom property set that it controls--
"myFrenchStrings". Because there is only one handler for all the custom properties in this
set, the handler uses the switch control structure to perform a different action for each
property that it deals with.

Suppose you change the "standardErrorPrompt" custom property:

set the customPropertySet of this stack to \
 "myFrenchStrings"
set the standardErrorPrompt of this stack to field 1

Revolution sends a setProp trigger to the stack, which causes the above handler to
execute. The property you set – "standardErrorPrompt" – is placed in the
"myPropertyName" parameter, and the new value--the contents of field 1 – is placed in
the "newValue" parameter. The handler executes the case for "standardErrorPrompt",
putting a return character before and after the property before setting it.

If you set a custom property other than "standardErrorPrompt" or "filePrompt" in the
"myFrenchStrings" set, the default case is executed. In this case, the pass control
structure lets the setProp trigger proceed along the message path, and when it reaches
the engine, Revolution sets the custom property.

235

Note: As mentioned above, you can address a custom property in a set either by first
switching to that set, or using array notation to specify both set and property. The
following example:

set the customPropertySet of me to "mySet"
set the myProperty of me to true

is equivalent to:

set the mySet["myProperty"] of me to true

Regardless of how you set the custom property, if it is a member of a custom property
set, the setProp trigger has the name of the set--not the custom property itself--and you
must use a setProp handler in the form described above to trap the setProp trigger.

7.10.3 Responding to a request for the value of a custom property
When you use a custom property in an expression, Revolution sends a getProp call to the
object whose property's value is being requested.

A getProp call acts very much like a custom function call. It is sent to a particular object.
If that object's script contains a getProp handler for the property, the handler is
executed, and Revolution substitutes the value it returns for the custom property
reference. Otherwise, the call travels along the message path until it finds a handler for
the property. If the getProp call reaches the end of the message path without being
trapped, Revolution substitutes the custom property's value in the expression.

You can include as many getProp handlers in a script as you need.

The structure of a getProp handler
Unlike a message handler, a getProp handler begins with the word getProp instead of
the word on. This is followed by the handler's name (which is the same as the name of
the custom property). A getProp handler, like all handlers, ends with the word "end"
followed by the handler's name.

The following example is a getProp handler for a custom property named "percentUsed":

getProp percentUsed
 global lastAccessTime
 put the seconds into lastAccessTime
 pass percentUsed
end lastChanged

When you use the "percentUsed" custom property in an expression, the handler is
executed:

236

put the percentUsed of card 1 into myVariable

When this statement is executed, Revolution sends a getProp call to the card to retrieve
the value of the "percentUsed" property. This executes the getProp handler for the
property. The example handler stores the current date and time in a global variable before
the property is evaluated. For more details, see getProp in the Revolution Dictionary.

Returning a value from a getProp handler
When the getProp trigger reaches the engine – the last stop in the message path –
Revolution gets the custom property from the object and substitutes its value in the
expression where the property was used.

To let a trigger pass further along the message path, use the pass control structure. The
pass control structure stops the current handler and sends the trigger on to the next
object in the message path, just as though the object didn't have a handler for the custom
property.

To report a value other than the value that's stored in the custom property--for example, if
you want to reformat the value first – you use the return control structure instead of
passing the getProp call. The following example is a getProp handler for a custom
property named "lastChanged", which holds a date in seconds:

getProp lastChanged
 get the lastChanged of the target
 convert it to long date
 return it
end lastChanged

The return control structure, when used in a getProp handler, reports a property value
to the handler that requested it. In the above example, the converted date – not the raw
property – is what is reported. As you can see from the example, you're not limited to
returning the actual, stored value of the custom property. In fact, you can return any value
at all from a getProp handler.

Important: If you use a custom property's value within the property's getProp handler,
no getProp call is sent to the target object. This is to avoid runaway recursion, where the
getProp handler calls itself.

A handler can either use the return control structure to return a value, or use the pass
control structure to let Revolution get the custom property from the object.

If the getProp call is trapped before it reaches the engine and no value is returned in the
getProp handler, the custom property reports a value of empty. In other words, a getProp
handler must include either a return control structure or a pass control structure, or
its custom property will always be reported as empty.

237

Using the message path with a getProp call
Because getProp calls use the message path, a single object can receive the getProp calls
for all the objects it owns. For example, getProp calls for all controls on a card are sent to
the card, if the control's script has no handler for that property. You can take advantage of
the message path to implement the same getProp behavior for objects that all have the
same custom property.

Caution: If a getProp handler is not attached to the object that has the custom
property and it uses the value of the custom property, a runaway recursion will result. To
avoid this problem, set the lockMessages property to true before getting the custom
property's value.

Nonexistent properties
If the custom property specified by a getProp handler doesn't exist, the getProp handler is
still executed if the property is used in an expression. Nonexistent properties report
empty; getting the value of a custom property that doesn't exist does not cause a script
error.

Custom property sets and getProp handlers
A getProp handler for a custom property set behaves differently from a getProp handler
for a custom property that's in the default set.

When you use the value of a custom property in a custom property set, the getProp call is
named for the set, not the property. The property name is passed in a parameter using
array notation. This means that, for custom properties in a set, you write a single getProp
handler for the set, rather than one for each individual property.

The following example handles getProp calls for all custom properties in a custom
property set called expertSettings, which contains custom properties named
fileMenuContents, editMenuContents, and perhaps other custom properties:

getProp expertSettings[thePropertyName]
-- The thePropertyName parameter contains the name of
 -- the property that's being set
 switch thePropertyName
 case "fileMenuContents"
 if the expertSettings[fileMenuContents] of the \
 target is empty then return "(No items"
 else pass expertSettings
 break
 case "editMenuContents"
 if the expertSettings[editMenuContents] of the \
 target is empty then return \
 the noviceSettings[editMenuContents] of the target

238

 else pass expertSettings
 break
 default
 pass expertSettings
 end switch
end expertSettings

As you can see from the pass and end control structures, the name of this getProp
handler is the same as the name of the custom property set that it controls –
"expertSettings". Because there is only one handler for all the custom properties in this
set, the handler uses the switch control structure to perform a different action for each
property that it deals with.

Suppose you get the "fileMenuContents" custom property:

set the customPropertySet of button 1 to "expertSettings"
put the fileMenuContents of button 1 into me

Revolution sends a getProp call to the button, which causes the above handler to execute.
The property you queried – "fileMenuContents" – is placed in the "thePropertyName"
parameter. The handler executes the case for "fileMenuContents": if the property is
empty, it returns "(No items". Otherwise, the pass control structure lets the getProp call
proceed along the message path, and when it reaches the engine, Revolution gets the
custom property.

7.11 Virtual Properties
A virtual property is a custom property that exists only in a setProp and/or getProp
handler, and is never actually set. Virtual properties are never attached to the object.
Instead, they act to trigger setProp or getProp handlers that do the actual work.

When you use the set command with a virtual property, its setProp handler is executed,
but the setProp trigger is not passed to the engine, so the property is not attached to the
object. When you use a virtual property in an expression, its getProp handler returns a
value without referring to the object. In both cases, using the property simply executes a
handler.

You can use virtual properties to:

• Give an object a set of behaviors
• Compute a value for an object
• Implement a new property that acts like a built-in property

7.11.1 When to use virtual properties
Because they're not stored with the object, virtual properties are transient: that is, they are
re-computed every time you request them. When a custom property depends on other
properties that may be set independently, it's appropriate to use a virtual property.

239

For example, the following handler computes the current position of a scrollbar as a
percentage (instead of an absolute number):

getProp asPercentage -- of a scrollbar
 put the endValue of the target \
 - the startValue of the target into valueExtent
 return the thumbPosition of me * 100 div valueExtent
end asPercentage

The "asPercentage" custom property depends on the scrollbar's thumbPosition,
which can be changed at any time (either by the user or by a handler). Because of this, if
we set a custom property for the object, it would have to be re-computed every time the
scrollbar is updated in order to stay current. By using a virtual property, you can ensure
that the value of the property is never out of date, because the getProp handler re-
computes it every time you call for the "asPercentage" of the scrollbar.

Virtual properties are also useful solutions when a property's value is large. Because the
virtual property isn't stored with the object, it doesn't take up disk space, and only takes
up memory when it's computed.

Another reason to use a virtual property is to avoid redundancy. The following handler
sets the width of an object, not in pixels, but as a percentage of the object's owner's
width:

setProp percentWidth newPercentage
 set the width of the target to \
 the width of the owner of the target \
 * newPercentage div 100
end percentWidth

Suppose this handler is placed in the script of a card button in a 320-pixel-wide stack. If
you set the button's "percentWidth" to 25, the button's width is set to 80, which is 25%
of the card's 320-pixel width. It doesn't make much sense to store an object's
percentWidth, however, because it's based on the object's width and its owner's width.

Consider using virtual properties whenever you want to define an attribute of an object,
but it doesn't make sense to store the attribute with the object – because it would be
redundant, because possible changes to the object mean it would have to be re-computed
anyway, or because the property is too large to be easily stored.

7.11.2 Handlers for a virtual property
As you can see by looking at the example above, a handler for a virtual property is
structured like a handler for any other custom property. The only structural difference is
that, since the handler has already done everything necessary, there's no need to actually
attach the custom property to the object or get its value from the object. When you set a
virtual property or use its value, the setProp trigger or getProp call does not reach
the engine, but is trapped by a handler first.

240

Virtual property setProp handlers
A setProp handler for an ordinary custom property includes the pass control structure,
allowing the setProp trigger to reach the engine and set the custom property (or else it
includes a set command that sets the property directly). A handler for a virtual property,
on the other hand, does not include the pass control structure, because a virtual property
should not be set. Since the property is set automatically when the trigger reaches the end
of the message path, a virtual property's handler does not pass the trigger.

If you examine an object's custom properties after setting a virtual property, you'll find
that the custom property hasn't actually been created. This happens because the
setProp handler traps the call to set the property; unless you pass the setProp trigger,
the property isn't passed to Revolution, and the property isn't set.

Virtual property getProp handlers
Similarly, a getProp handler for an ordinary custom property either gets the property's
value directly, or passes the getProp call so that the engine can return the property's
value. But in the case of a virtual property, the object doesn't include the property, so the
getProp handler must return a value.

7.11.3 Creating new object properties
You can use virtual properties to create a new property that applies to all objects, or to all
objects of a particular type. Such a property acts like a built-in property, because you can
use it for any object. And because a virtual property doesn't rely on a custom property
being stored in the object, you don't need to prepare by creating the property for each new
object you create: the virtual property is computed only when you use it in an expression.

The following example describes how to implement a virtual property called
"percentWidth" that behaves like a built-in property.

Setting the "percentWidth" property
Suppose you place the "percentWidth" handler described above in a stack script instead
of in a button's script:

setProp percentWidth newPercentage
 set the width of the target to \
 the width of the owner of the target \
 * newPercentage div 100
end percentWidth

Because setProp triggers use the message path, if you set the "percentWidth" of any
object in the stack, the stack receives the setProp trigger (unless it's trapped by another
object first). This means that if the handler is in the stack's script, you can set the
"percentWidth" property of any object in the stack.

241

If you place the handler in a backscript, you can set the "percentWidth" of any object,
anywhere in the application.

Note: To refer to the object whose property is being set, use the target function. The
target refers to the object that first received the setProp trigger--the object whose
custom property is being set--even if the handler being executed is in the script of another
object.

Getting the "percentWidth" property
The matching getProp handler, which lets you retrieve the "percentWidth" of an object,
looks like this:

getProp percentWidth
 return 100 * (the width of the target \
 div the width of the owner of the target)
end percentWidth

If you place the handler above in a card button's script, the following statement reports
the button's width as a percentage:

put the percentWidth of button "My Button" into field 12

For example, if the stack is 320 pixels wide and the button is 50 pixels wide, the button's
width is 15% of the card width, and the statement puts "15" into the field.

Like the setProp handler for this property, the getProp handler should be placed far
along the message path. Putting it in a stack script makes the property available to all
objects in the stack; putting it in a backscript makes the property available to all objects
in the application.

Limiting the "percentWidth" property
Most built-in properties don't apply to all object types, and you might also want to create
a virtual property that only applies to certain types of objects. For example, it's not very
useful to get the width of a substack as a percentage of its main stack, or the width of a
card as a percentage of the stack's width.

You can limit the property to certain object types by checking the target object's
name:

setProp percentWidth newPercentage
 if word 1 of the name of the target is "stack" \
 or word 1 of the name of the target is "card" \
 then exit setProp
 set the width of the target to \
 the width of the owner of the target \

242

 * newPercentage div 100
end percentWidth

The first word of an object's name is the object type, so the above revised handler
ignores setting the "percentWidth" if the object is a card or stack.

7.12 Managing Windows, Palettes and Dialogs
Revolution provides complete control over all aspects of window management, including
moving, re-layering, and changing window mode.

7.12.1 Moving a window
Usually, you use either the location or rectangle property of a stack to move the
stack window.

Thelocation property specifies the center of the stack's window, relative to the top left
corner of the main screen. Unlike the location of controls, the location of a stack
is specified in absolute coordinates. The following statement moves a stack to the center
of the main screen:

set the location of stack "Wave" to the screenLoc

The rectangle property of a stack specifies the position of all four edges, and can be
used to resize the window as well as move it:

set the rectangle of this stack to "100,100,600,200"

Tip: To open a window at a particular place without flickering, set the stack's location or
rectangle property to the desired value either before going to it, or in the stack’s
preOpenStack handler.

You can also use associated properties to move a window. Changing a stack's bottom or
top property moves the window up or down on the screen. Changing the left or
right property moves the window from side to side.

7.12.2 Changing a window's layer
You bring a window to the front by using the go command:

go stack "Alpha"

If the stack is already open, the go command brings it to the front, without changing its
mode.

To find out the layer order of open stack windows, use the openStacks function. This
function lists all open stack windows in order from front to back.

243

The palette layer
Normally, palette windows float above editable windows and modeless dialog boxes. A
palette will always above a standard window, even if you bring the standard window to
the front. This helps ensure that palettes, which usually contain tools that can be used in
any window, cannot disappear behind document windows. It's also a good reason to make
sure you design palette windows to be small, because other windows cannot be moved in
front of them if the palette blocks part of the window.

The system palette layer
System windows--stacks whose systemWindow property is true--float above all other
windows, in every running application. This means that even if the user brings another
application to the front, your application's system windows remain in front of all
windows.

System windows are always in front of other windows, and you cannot change this
behavior.

7.12.3 The active window
In most applications, commands are applied to the active window. Since Revolution gives
you the flexibility to use several different window types, not all of which are editable, the
current stack is not always the same as the active window. The current stack is the target
of menu choices such as View -> Go Next and is the stack specified by the expressionthis
stack.

For example, executing the find command may have unexpected results if stacks of
different modes are open, because under these conditions, the search may target a stack
that is not the frontmost window.

Finding the current stack
The current stack--the stack that responds to commands--is designated by the
defaultStack property. To determine which stack is the current stack, use the
following rules:

1. If any stacks are opened in an editable window, the current stack is the frontmost
unlocked stack. (A stack is unlocked if its cantModify property is set to false.)

2. If there are no unlocked stacks open, the current stack is the frontmost locked stack in
an editable window.

3. If there are no stacks open in an editable window, the current stack is the frontmost
stack in a modeless dialog box.

4. If there are no editable or modeless windows open, the current stack is the frontmost
palette.

244

Another way of expressing this set of rules is to say that the current stack is the frontmost
stack with the lowest mode property. You can find out which stack has the lowest mode
using the topStack function.

The topStack function and the defaultStack property:
The defaultStack property specifies which stack is the current stack. By default, the
defaultStack is set to the topStack, although you can change the
defaultStack to any open stack.

The topStack function goes through the open stacks first by mode, then by layer. For
example, if any editable windows are open, the topmost editable window is the
topStack. If there are no editable windows, the topStack is the topmost modeless
dialog box, and so on.

Changing the current stack
To operate on a stack other than the current stack, set the defaultStack property to
the stack you want to target before executing the commands. Usually, the
defaultStack is the topStack, but you can change it if you want to override the
usual rules about which window is active.

A note about Unix systems
If your system is set up to use pointer focus rather than click-to-type or explicit focus,
you may experience unexpected results when using Revolution, since the current stack
will change as you move the mouse pointer. It is recommended that you configure your
system to use explicit focus when using Revolution or any other applications created in
Revolution.

7.12.4 Creating a backdrop
For some applications, you may want to create a solid or patterned backdrop behind your
application's windows. This backdrop prevents other applications' windows from being
seen – although it does not close those windows – so it's appropriate for applications like
a game or kiosk, where the user doesn't need to see other applications and where you
want to keep distractions to a minimum.

Note: In Revolution Media edition, you cannot turn off the backdrop property.

To create a backdrop, you set the backdrop property to either a valid color reference,
or the ID of an image you want to use as a tiled pattern:

set the backdrop to "#99FF66" -- a color
set the backdrop to 1943 -- an image ID

In the Revolution development environment, you can create a backdrop by choosing
View -> Backdrop. Use the Preferences dialog box to specify a backdrop color to use.

245

7.12.5 Open, Closed, and Hidden Windows
Each open stack is displayed in a stack window. A stack can be open without being
visible, and can be loaded into memory without being open.

Hidden stacks
A stack window can be either shown or hidden, depending on the stack's visible
property. This means a window can be open without being visible on the screen.

Tip: To list all open stacks, whether they're visible or hidden, use the openStacks
function.

Loaded stacks
A stack can also be loaded into memory without actually being open. A stack whose
window is closed (not just hidden) is not listed by the openStacks function. However,
it takes up memory, and its objects are accessible to other stacks. For example, if a closed
stack that's loaded into memory contains a certain image, you can use the image as a
button icon in another stack.

A stack can be loaded into memory without being open under any of the following
conditions:

A handler in another stack referred to a property of the closed stack. This automatically
loads the referenced stack into memory.

The stack is in the same stack file as another stack that is open.

The stack was opened and then closed, and its destroyStack property is set to false.
(If the destroyStack property is false, the stack is closed, but not unloaded, when its
window is closed.)

Tip: To list all stacks in memory, whether they're open or closed, use the
revLoadedStacks function.

7.12.6 The states of a stack
A stack, then, can be in any of four states:

Open and visible:The stack is loaded into memory, its window is open, and the window
is visible.

Open and hidden:The stack is loaded into memory, its window is open, but the window
is hidden. The stack is listed in the Window menu and in the Application Browser.

246

Closed but loaded into memory:The stack is loaded into memory, but its window is not
open and it is not listed by the openStacks function or in the Window menu.
However, its objects are still available to other stacks, and it is listed in the Application
Browser. A stack that is closed but loaded into memory has a mode property of zero.

To remove such a stack from memory, choose Tools -> Application Browser, find the
stack's name, and Control-click it (Mac OS or OS X) or Right-click it (Unix or
Windows) in the Application Browser window and choose "Close and Remove from
Memory" from the contextual menu.

Closed:The stack is not loaded into memory and has no effect on other stacks.

7.12.7 Window Types and the Mode Property
In a script, you can find out a stack window's type by checking the stack's mode
property. This read-only property reports a number that depends on the window type. For
example, the mode of an editable window is 1, and the mode of a palette is 4.

You can use the mode property in a script to check what sort of window a stack is being
displayed in:

if the mode of this stack is 5 then -- modal dialog box
 close this stack
 else -- some other type of window
 beep
end if

For complete information about the possible values of the mode property, see its entry in
the Revolution dictionary.

7.12.8 Window Appearance
Details of a window's appearance, such as the height of its title bar and the background
color or pattern in the window itself, are mainly determined by the stack's mode. There
are a few additional elements of window appearance that you can control with specific
properties.

The metal property
On OS X systems, you use a stack's metal property to give the stack window a textured
metal appearance. This metal appearance applies to the stack's title bar and its
background.

Tip: The metal appearance, in general, should be used only for the main window of an
application, and only for windows that represent a physical media device such as a CD
player. See Apple's Aqua user-interface guidelines for more information.

247

Window background color
The background color or pattern of a window's content area--the part that isn't part of the
title bar--is determined by the window type and operating system, by default. For
example, on OS X systems, a striped background appears in palettes and modeless dialog
boxes.

If you want a window to have a specific color or pattern, you can set the stack's
backgroundColor or backgroundPattern property:

set the backgroundColor of stack "Alpha" to "aliceblue"
set the backgroundPattern of stack "Beta" to 2452 -- img ID

This color or pattern overrides the usual color or background pattern.

7.12.9 The Decorations Property
Most of the properties that pertain to a window's appearance can also be set in the stack's
decorations property. The decorations of a stack consists of a comma-separated
list of decorations:

set the decorations of stack "Gamma" to "title,minimize"

The statement above sets the stack'sminimizeBox property to true, as well as showing
its title bar, and sets other stack properties (maximizeBox, closeBox, metal) to
false. Conversely, if you set a stack's minimizeBox property to true, its
decorations property is changed to include "minimize" as one of its items. In this
way, the decorations property of a stack interacts with its closeBox,
minimizeBox, zoomBox, metal, shadow, and systemWindow properties.

The decorations property and menu bars in a window
On Unix and Windows systems, the menu bar appears at the top of the window. On these
systems, whether a window displays its menu bar is determined by whether the stack's
decorations property includes "menu":

set the decorations of this stack to "title,menu"

On Mac OS and OS X systems, the menu bar appears at the top of the screen, outside any
window. On these systems, the "menu" decoration has no effect.

Title bar
The user drags the title bar of a window to move the window around the screen. In
general, if the title bar is not displayed, the user cannot move the window. You use the
decorations property (discussed below) to hide and show a window's title bar.

When the user drags the window, Revolution sends a moveStack message to the
current card.

248

The decorations property affects only whether the window can be moved by
dragging it. Even if a stack's decorations property does not include the title bar
decoration, you can still set a stack's location, rectangle, and related properties to
move or resize the window.

Window title
The title that appears in the title bar of a window is determined by the stack's label
property. If you change a stack's label in a script, the window's title is immediately
updated.

If the label is empty, the title bar displays the stack's name property. (If the stack is in
an editable window whose cantModify is false, an asterisk appears after the window
title to indicate this, and if the stack has more than one card, the card number also appears
in the window title. These indicators do not appear if the stack has alabel.)

Because the window title is determined by the stack's label property instead of its
name property, you have a great deal of flexibility in changing window title. Your scripts
refer to the stack by its name--which doesn't need to change--not its label, so you can
change the window title without changing any scripts that refer to the stack.

The close box
The close box allows the user to close the window by clicking it. To hide or show the
close box, you set the stack's closeBox property:

set the closeBox of stack "Bravo" to false

When the user clicks the close box, Revolution sends a closeStackRequest
message, followed by a closeStack message, to the current card.

The closeBox property affects only whether the window can be closed by clicking.
Even if a stack's closeBox property is false, you can still use the close command in a
handler or the message box to close the window.

The minimize box or collapse box
The terminology and behavior of this part of the title bar varies depending on platform.
On Mac OS systems, the collapse box shrinks the window so only its title bar is shown.
The minimize box (OS X and Windows systems) or iconify box (Unix systems) shrinks
the window to a desktop icon.

To hide or show the minimize box or collapse box, you set the stack's minimizeBox
property:

set the minimizeBox of this stack to true

249

Tip: On OS X and Unix systems, you can set a stack's icon property to specify the icon
that appears when the stack is minimized.

When the user clicks the minimize box or collapse box, Revolution sends an
iconifyStack message to the current card.

The maximize box or zoom box
The terminology and behavior of this part of the title bar varies depending on platform.
On Mac OS and OS X systems, the zoom box switches the window between its current
size and maximum size. The maximize box (Unix and Windows systems) expands the
window to its maximum size.

To hide or show the zoom box or maximize box, you set the stack's zoomBox property:

set the zoomBox of stack "Hello" to false

When the user clicks the zoom box or maximize box, Revolution sends a
resizeStack message to the current card.

7.12.10 Making a stack resizable
A stack's resizable property determines whether the user can change its size by dragging
a corner or edge (depending on operating system) of the stack window.

Tip: To move and resize controls automatically to fit when a stack is resized, use the
"Geometry" pane in the control's property inspector.

Some stack modes cannot be resized, regardless of the setting of the stack's resizable
property. Modal dialog boxes, sheets, and drawers cannot be resized by the user, and do
not display a resize box.

The resizable property affects only whether the window can be resized by dragging a
corner or edge. Even if a stack's resizable property is set to false, you can still set a
stack's location, rectangle, and related properties to move or resize the window.

When the user resizes a stack, Revolution sends a resizeStack message to the current
card.

7.12.11 Irregularly-Shaped and Translucent Windows
You can set a stack’s windowShape property to the transparent, or alpha channel of an
image that has been imported together with its alpha channel. This allows you to create a
window with "holes" or a window with variable translucency. You can apply a shape to

250

any type of stack, regardless of the mode it is opened, allowing such a window to exhibit
modal behavior as a dialog, float as a palette, etc.

You may use either a GIF or PNG image for irregularly shaped windows. If you want
translucency you must use PNG images. Translucency is currently only supported on
Windows and Mac OS X systems.

7.13 Programming Menus & Menu Bars
Menus in Revolution are not a separate object type. Instead, you create a menu from
either a button or a stack, then use special commands to display the menu or to include it
in a menu bar.

This topic discusses menu bars, menus that are not in the menu bar (such as contextual
menus, popup menus, and option menus), how to make menus with special features such
as checkmarks and submenus, and how to use a stack window as a menu for total control
over menu appearance.

To easily create menu bars that work cross-platform, choose Tools -> Menu Builder.
See the section on the Menu Builder in the chapter on Building a User interface for more
details. The details about menu bars in this topic are needed only if you want edit menu
bars by script, for example if you want to include specific features not supported by the
Menu Builder.

7.13.1 Menu Types
Revolution supports several menu types: pulldown menus, option menus (usually called
popup menus on Mac OS and OS X), popup menus (usually called contextual menus on
Mac OS and OS X), and combo boxes.

Each of these menu types is implemented by creating a button. If the button's style
property is set to "menu", clicking it causes a menu to appear. The button's menuMode
property determines what kind of menu is displayed.

Even menu bars are created by making a pulldown-menu button for each menu, then
grouping the buttons to create a single menu bar. The menu bar can be moved to the top
of the stack window (on Unix and Windows systems). To display the menu bar in the
standard location at the top of the screen on Mac OS and OS X systems, you set the
stack's menubar property to the group's name. The name of each button is displayed in
the menu bar as a menu, and pulling down a menu displays the contents of the button as a
list of menu items.

7.13.2 Button Menus
You can create a button menu by dragging out one of the menu controls from the tools
palette. However, if you want to create one by script, the easiest is to create a button and
set the style of the button to "menu". Next, you can set the menuMode of the button to
the appropriate menu type. You can either set the menuMode in a handler, or use the
Type menu in the button's property inspector to set the menu type.

251

To create the individual menu items that will appear in the menu, set the button's text
property to the menu's contents, one menu item per line. You can either set this property
in a handler, or fill in the box labeled "Menu items" on the Basic Properties pane of the
property inspector.

When you click the button, the specified menu type appears, with the text you entered
displayed as the individual menu items in the menu.

Tip: To dynamically change the menu's contents at the time it's displayed, put a
mouseDown handler in the button's script that puts the desired menu items into the
button. When the menu appears, it displays the new menu items.

For menus that retain a state (such as option menus and combo boxes), the button's
label property holds the text of the currently chosen menu item.

Handling the menuPick message
When the user chooses an item from the menu, Revolution sends the menuPick
message to the button. The message parameter is the name of the menu item chosen. If
you want to perform an action when the user chooses a menu item, place a menuPick
handler like this one into the button's script:

on menuPick theMenuItem
 switch theMenuItem
 case "Name of First Item"
 -- do stuff here for first item
 break
 case "Name of Second Item"
 -- do stuff here for second item
 break
 case "Name of Third Item"
 -- do stuff here for third item
 break
 end switch
end menuPick

Changing the currently-chosen menu item
For menus that retain a state (such as option menus and combo boxes), you can change
the currently-chosen menu item by changing the button's label property to the text of
the newly chosen item

If you change the currently-chosen menu item in option menus, also set the button's
menuHistory property to the line number of the newly chosen item. This ensures that
the new choice will be the one under the mouse pointer the next time the user clicks the
menu.

252

7.13.3 Creating Cascading Menus
To create a cascading menu (also called a submenu, pull-right menu, or hierarchical
menu), add a tab character to the start of menu items that you want to place in the
submenu.

For example, the following text, when placed in a menu button, creates two menu items,
then a submenu containing two more items, and finally a last menu item:

 First Item
 Second Item
 Third Item Is A Submenu
 First Item In Submenu
 Second Item In Submenu
 Last Menu Item Not In Submenu

The depth of a submenu item is determined by the number of tab characters before the
menu item's name. The submenu item becomes part of the closest line above the submenu
item that has one fewer leading tab character.

This means that the first line of a menu cannot start with a tab character, and any line in
the button's text can have at most one more tab character than the preceding line.

Important: You cannot create a cascading combo box at all, and cascading option
menus do not work properly on all platforms. In general, you should create cascading
menus only as a part of a pulldown menu.

Cascading menus and the menuPick message
When the user chooses a menu item in a cascading menu, the parameter of the
menuPick message contains the menu item name and the name of the submenu it's part
of, separated by a vertical bar (|). For example, if the user chooses the "Second Item In
Submenu" from the menu described above, the parameter sent with the menuPick
message is:

 Third Item Is A Submenu|Second Item In Submenu

7.13.4 Ticks, Dashes & Checks in Menus
There are several special characters that you can put at the start of a line in the button's
contents to change the behavior of the menu item:

 - A dash on a line by itself creates a divider line
 !c checks the menu item
 !n unchecks the menu item
 !r places a diamond at the start of the menu item
 !u removes the diamond

253

If you include any of the above special characters in a submenu item, the special
character must be placed at the start of the line – before the tab characters that make it a
submenu item.

Note: You cannot create divider lines in combo boxes or in option menus on Windows
systems.

There are three other special characters that can appear anywhere in a line:

Putting the & character anywhere in a line underlines the next character and makes it the
keyboard mnemonic for that menu item on Windows systems. The & character does not
appear in the menu, and is not sent with the parameter to the menuPick message when
you choose the item from a menu.

Putting the / character anywhere in a line makes the next character the keyboard
equivalent for the menu item. Neither the / nor the character following it appear in the
menu, nor do they appear in the parameter to the menuPick message.

To put an & or / character in the text of a menu, double the characters: && or //.

Putting the (character anywhere in a line disables the menu item. To put a (character
in a menu item without disabling it, precede it with a backslash: \(.

Note: You cannot disable lines in combo boxes or in option menus on Windows
systems.

All of the above special characters are filtered out of the parameter sent with the
menuPick message when the user chooses a menu item. The parameter is the same as
the characters that are actually displayed in the menu.

Note: The font and color of a button menu is determined by the button's font and color
properties. However, on Mac OS systems, the font and color of the option menus and
popup menus is controlled by the operating system's settings if the lookAndFeel is set
to "Appearance Manager", rather than by the button's font and color properties.

Enabling and disabling menu items
To enable or disable a menu item in a handler, you can add or remove the (special
character, but it is generally easier to use the enable menu and disable menu
commands:

254

enable menuItem 3 of button "My Menu"
disable menuItem 4 of me

These commands simply add or remove the (special character at the start of the
designated line of the button's contents.

7.13.5 Menu Bars on Unix and Windows Systems
A menu bar is made up of a group of menu buttons, with the menuMode property of
each button set to "pulldown".

Tip: The Menu Builder can automatically create a menu bar for you. To use the Menu
Builder, choose Tools -> Menu Builder.

To create a menu bar by hand without using the Menu Builder:

1. Create a button for each menu, set the style of each button to "menu", and set the
menuMode of the button to "pulldown". You can either set these properties in a handler,
or simply choose Object -> New Control Pulldown Menu to create each button.

2. Put the menu items into each button's contents. In each button's script, create a
menuPick handler to perform whatever actions you want to do when a menu item is
chosen.

3. Select the buttons and form them into a group, then move the group to the appropriate
position at the top of the window. For Windows systems, set the textFont of the group
to the standard font for Windows menus, "MS Sans Serif".

Important: The buttons in your menu bar should not overlap. Overlapping buttons may
cause unexpected behavior when the user tries to use a menu.

7.13.6 Menu Bars on Mac OS Systems
To create a Mac OS menu bar, you follow the same steps as for a Unix and Windows
menu bar above. This places a group of buttons, each of whose menuMode property is
set to "pulldown", at the top of your stack window.

Next, you set the menubar property of your stack to the name of the group. This does
two things: it displays the menus in the menu bar at the top of the screen, and it shortens
the stack window and scrolls it up so that the group of menu buttons is not visible in the
window. Since the menus are in the menu bar, you don't need to see them in the stack
window as well.

255

Important: If your stack has more than one card, make sure that the group is placed on
all the cards. (To place a group on a card, choose Object menu Place Group, or use the
place command.) This ensures that the menu bar will be accessible on all cards of the
stack, and prevents the stack from changing size as you move from card to card (to
accommodate shortening the stack window for the menu bar group).

The default menu bar
If other stacks in your application don't have their own menu bars, set the
defaultMenubar global property to the name of your menu group, as well as setting
the stack's menubar property. The defaultMenubar is used for any stack that
doesn't have a menu bar of its own.

Tip: For a custom menu bar to work correctly inside the Revolution development
environment, you must set the defaultMenubar to the name of your menu group. This
overrides the Revolution IDE menu bar. You can get the menu bar back by choosing the
pointer tool.

Button menu references
If the button is a button menu that's being displayed in the menu bar, you can use the
word "menu" to refer to it:

get menuItem 2 of menu "Edit"
-- same as 'get line 2 of button "Edit"'

Because menus are also buttons, you can use a button reference to get the same
information. But you may need to specify the group and stack the button is in, to avoid
ambiguity. (For example, if there is a standard button named "Edit" on the current card,
the expression button "Edit" refers to that button, not to the one in the menu bar.)
An unambiguous button reference to a menu might look like this:

get line 2 of button "Edit" of group "Menu" of stack "Main"

The above statement produces the same information as the form using "menu", but you
need to know the group name and possibly which stack it's in, so the menu
menuNameform is a little more convenient.

The layer of menu buttons
For a menu bar to work properly on Mac OS and OS X systems, the menus must be in
layer order within the group. That is, the button for the File menu must be numbered 1,
the button for the Edit menu must be 2, and so on. The Menu Builder takes care of this
automatically; you only need to worry about layering if you're creating the menu bar by
hand.

256

Changing menus dynamically
If you want to dynamically change a menu's contents with a mouseDown handler at the
time the menu is displayed, you must place the mouseDown handler in the group's
script. When a menu button is being displayed in the Mac OS menu bar, it does not
receive mouseDown messages, but its group does.

The editMenus property
When you set the menubar property of a stack to the name of a group, the stack is
resized and scrolled up so the part of the window that holds the menus is not visible. To
reverse this action so you can see, select and edit the buttons that make up your menu bar,
set the editMenus property to true. This resizes the stack window so the button menus
are again visible, and you can use the tools in the Revolution development environment
to make changes to them.

To scroll the stack window again so that the menus are hidden, set the editMenus
property back to true.

Special menu items
A few menu items on Mac OS and OS X are handled directly by the operating system. To
accommodate these special menu items while allowing you to create a fully cross-
platform menu bar, Revolution treats the last two menu items of the Help menu (for Mac
OS and OS X), the File menu (OS X), and the Edit menu (OS X) differently.

By following these guidelines, you can make sure your menus will appear properly on all
operating systems without having to write special code or create platform-specific menu
bars.

The Help menu and the "About This Application" menu item
When Revolution sets up the Mac OS menu bar, it automatically makes the last button
the Help menu (regardless of the button's name). The standard Help menu items, such as
"About This Application" and "Show Balloons" on Mac OS Classic, are included for you
automatically; you don't need to include them in your Help menu button, and you can't
eliminate them from the Help menu.

Revolution moves the last menu item in the Help menu to the "About This Application"
position. On Mac OS systems, this is the first menu item in the Apple menu. On OS X
systems, it's the first menu item in the Application menu. Therefore, the last menu item in
your Help menu button should be an appropriate "About" item. The menu item above it
must be a divider line (a dash), and above that must be at least one menu item to be
placed in the Help menu.

The File menu and the "Quit" menu item
On OS X systems, the "Quit" menu item is normally placed in the Application menu
(which is maintained by the operating system) rather than in the File menu, as is standard
on other platforms. To accommodate this user-interface standard, Revolution removes the
last two menu items of the File menu when a standalone application is running on an OS

257

X system. Therefore, the last menu item in your File menu button should be "Quit". The
menu item above it should be a divider line (a dash).

The Edit menu and the "Preferences" menu item
On OS X systems, the "Preferences" menu item is also normally placed in the
Application menu. To accommodate this user-interface standard, Revolution removes the
last two menu items of the Edit menu when a standalone application is running on an OS
X system. Therefore, the last menu item in your Edit menu button should be
"Preferences". The menu item above it should be a divider line (a dash).

Note: The Preferences menu item is treated in this special way only if its name starts
with the string "Preferences".

Tip: If your application's user interface is presented in a language other than English, set
the name of the Edit menu button to "Edit", and set its label to the correct translation.
This ensures that the engine can find the Edit menu, while making sure that the menu is
shown in the correct language.

Choosing the special menu items
When the user chooses any of these special menu items, a menuPick message is sent to
the button that the menu item is contained in. This ensures that your button scripts will
work on all platforms, even if Revolution displays a menu item in a different menu to
comply with user-interface guidelines.

For example, if the user chooses "About This Application" from the Apple menu on a
Mac OS system, a menuPick message is sent to the Help menu button, with "About
This Application" as its parameter. You handle the message for the About menu item in
the Help menu button's script, even though Revolution displays this menu item in a
different menu on the Mac.

7.13.7 Stack Menus
Button menus can be used for most kinds of standard menus. However, if you want to
create a menu with a feature that is not supported by button menus--for example, if you
want a popup menu that provides pictures, rather than text, as the choices--you can create
a menu from a stack.

Creating a stack menu
To create a stack menu, you create a stack with a control for each menu item. Since the
stack menu is a stack and each menu item is an object, the menu items receive mouse
messages such as mouseEnter,mouseLeave, and mouseUp.

258

When the user chooses an item from the stack menu, a mouseUp message is sent to that
control. To respond to a menu item choice, instead of handling the menuPick message,
you can place a mouseUp handler in the script of the object.

To create a stack menu that looks like a standard menu, create a button in the stack for
each menu item. The button's autoArm and armBorder properties should be set to
true. Or you can choose "Menu Item" item in the "New Control" submenu of the Object
menu to create a button with its properties set to the appropriate values.

Be sure to set the rectangle of the stack to the appropriate size for the menu.
Remember, when you open the menu, the stack will be displayed exactly as it looks in an
editable window.

Finally, either set the menuName property of a button to a reference to the stack, or place
a mouseDown handler containing a pulldown, popup, or option command in the
script of an object. When you click the button or object, the stack menu appears.

Displaying a stack menu
Stack menus can be associated with a button, just like button menus. But when you click
the button, instead of displaying a menu with the button's contents, Revolution displays a
stack with the behavior of a menu.

You can also display a stack menu without associating it with a button, by using the
pulldown, popup, or option command. Normally, you use these commands in a
mouseDown handler, so that the menu appears under the mouse pointer:

on mouseDown -- in card script
 popup stack "My Menu Panel"
end mouseDown

7.13.8 Displaying Context Sensitive Menus
There are also several commands to display a context menu. Usually, you use these
commands in a mouseDown handler – normally either in your card or stack script:

 popup command: opens a stack as a popup menu
 pulldown command: opens a stack as a pulldown menu
 option command: opens a stack as an option menu

Note: If you set a button's menuName property to the name of a stack, the stack menu
is displayed automatically when the user clicks the button. You need the popup,
pulldown, and option commands only if you want to display a stack menu in some way
other than when a button is clicked.

259

7.14 Searching and Navigating Cards using the Find Command
The find command in Revolution allows you to search the fields of the current stack, then
navigate to and highlight the results of the search automatically. While it is possible to
build such a command using the comparison features detailed in the chapter Processing
Text and Data, for most purposes the find command provides a complete, pre-built
solution.

find [form] textToFind [in field]

The form can be one of the following:
normal
characters or character (or chars or char)
words or word
string
whole

If no form is specified, the find normal form is used.

The textToFind is any expression that evaluates to a string.

The field is any expression that evaluates to a field reference. If the field is not specified,
the find command searches all the fields in the current stack (except fields whose
dontSearch property is set to true).

find "heart"
find string "beat must go on" in field "Quotes"

When the find command finds a match, it highlights the match on the screen – if
necessary navigating to the card that contains the match and scrolling the field so the text
is in view.

The find command can also be used to return the location of the text that was found.

To reset the find command so that it starts searching at the beginning again:

find empty

For more details on the find command and associated options, see the find command in
the Revolution Dictionary.

7.15 Using Drag and Drop
Revolution allows you complete control over drag and drop – both within Revolution
windows and between Revolution and other applications.

260

7.15.1 Initiating a Drag Drop
To begin a drag and drop operation, the user clicks and holds the mouse pointer. This
sends a mouseDown message to the object.

If you drag from within a field, a dragStart message is sent. To allow drags from a
locked field or from another object type, in the object's mouseDown handler, set the
dragData property to the data you want to drag. When there is a value in the
dragData, a drag and drop is initiated when the mouse is clicked and then moved.

set the dragData["text"] to "text being dragged"

You can set the dragData to contain any of the following types of data:

text The plain text being dragged.
HTML The styled text being dragged, in the same format as

the htmlText
RTF The styled text being dragged, in the same format as

the RTFText
Unicode The text being dragged, in the same format as the

unicodeText
image The data of an image (in PNG format)
files The name and location of the file or files being

dragged, one per line

Note: Revolution automatically handles the mechanics of dragging and dropping text
between and within unlocked fields. To support this type of drag and drop operation, you
don't need to do any scripting.

For more details, see the entries for dragStart and dragData in the Revolution Dictionary.

7.15.2 Tracking During a Drag Drop Operation
You can use the dragEnter message to show an outline around an object or change the
cursor when the mouse moves into it during a drag operation.

on dragEnter -- show a green outline around the drop target
 set the borderColor of the target to "green"
end dragEnter

You can use the dragMove message to update the screen whenever the cursor moves
during a drag and drop operation.

on dragMove -- in a field script
-- set the cursor so it shows you can only drop onto a link
 if the textStyle of the mouseChunk contains "link"

261

 then set the cursor to the ID of image "Drop Here"
 else set the cursor to the ID of image "Dont Drop"
end dragMove

You can use the dragLeave message to remove any outline around an object or change
the cursor when the mouse moves out of an object during a drag operation.

on dragLeave
 -- remove any outline around the drop no-longer-target
 set the borderColor of the target to empty
end dragLeave

For more details, see the entries for dragEnter, dragMove and dragLeave in the
Revolution Dictionary.

7.15.3 Responding to a Drag and Drop
To perform an action when the user drops data onto a locked field or another object type,
you handle the dragDrop message.

The dragDrop message is sent when the user drops data on an object.

on dragDrop -- check whether a file is being dropped
 if the dragData["files"] is empty then beep 2
 pass dragDrop
end dragDrop

You must set the acceptDrop property to true before a drop will be allowed. Usually,
you set this property to true in a dragEnter handler.

You can use the dragDestination function to retrieve the long id of the object that
the dragged data was dropped on. You can use the dragSource function to retrieve the
long id of the object that was the source of the drag.

When a drag drop has been completed, a dragEnd message is sent to the object the drag
and drop started from.

on dragEnd -- remove data being dragged
 delete the dragSource
end dragEnd

You can use the dropChunk function to retrieve the location of the text that was
dropped in a field. For example, you could select the text that was dropped by doing the
following:

select the dropChunk

262

For more details, see the entries for dragDrop, dragEnter, dragDestination, dragEnd,
dragSource , dropChunk and acceptDrop in the Revolution Dictionary.

7.15.4 Prevent Dragging and Dropping to a Field
You prevent dropping data into a field during a drag and drop by setting the
acceptDrop property to false when the mouse pointer enters the field.

If the acceptDrop is set to false, when you drop data, no dragDrop message is sent
to the field. Since the drop is automatically processed only when Revolution receives a
dragDrop message, this prevents the usual automatic drop behavior.

Usually, you should set the acceptDrop in a dragEnter handler, as in the following
example:

on dragEnter -- in a field script
 set the acceptDrop to false
end dragEnter

If you want to prevent dragging text within a field, intercept the dragStart message:

on dragStart
 -- do nothing
end dragStart

For more details, see the entries for acceptDrop, dragDrop and dragEnter in the
Revolution Dictionary.

263

Chapter 8 Working With Databases
With the Revolution Database library, your application can communicate with external
SQL databases. (Database access is not available in Revolution Media.) You can get
data from single-user and multi-user databases, update data in them, get information
about the database structure, and display data from the database in your stack. And with
the Database Query Builder, you can automate the process of querying a database and
populating fields with the data, with no scripting required. For a discussion of when it is
appropriate to use an external database with Revolution, see the topic When to Use a
Database in Chapter 2.

This chapter discusses how to install necessary software to communicate with databases,
how to set up automatic database queries using the Database Query Builder, and how to
use the Database library to communicate between Revolution and a database.

This topic does not include discussion of how to set up and create a SQL database, which
is beyond the scope of the Revolution documentation.

To fully understand this topic, you should know how to write short scripts and should
understand the basic concepts of SQL databases (rows and columns, database cursors,
and SQL queries).

A few terms used in this topic, such as "field" and "cursor", are part of the standard
terminology for working with databases, but have a different meaning in the context of
Revolution development. When going back and forth between database work and more
general application development, be sure you understand which meaning is applicable in
the context you're currently working in. When referring to database-specific terms, the
documentation usually uses phrases like "database field" or "database cursor" to remind
you of the context. See the Glossary within the product documentation for definitions of
any term you are unsure of.

264

8.1 Introduction to Database Access
A database is an external resource that holds information, structured in a special form for
quick access and retrieval. Databases can be:

• any size from small to extremely large
• located on the same system as the application or on a remote server
• accessible by one user at a time or by many users at once

8.1.1 SQL Databases
A SQL database is a database that you access and control using SQL, a standard
database-access language which is widely supported. You use SQL queries (statements in
the SQL language) to specify the part of the database you want to work with, to get data,
or to make changes to the database.

Revolution's database access is fully-featured. You can send any SQL statement to a
database. You can open multiple databases (or multiple connections to the same
database), maintain multiple record sets (database cursors) per connection, and send and
receive binary data as well as text. You can do all this using the Database Query Builder,
or in scripts that use the commands and functions in the Database library.

To see a list of Revolution terms in the Database library, open the Dictionary, and type
"database" into the search filter field. You can also find a interactive workshop and
tutorial materials on our web site at:

http://www.runrev.com/developers/exploring-revolution/databases/

8.1.2 Why use an External Database?
See the section on When to use a Database in Chapter 2.

8.1.3 The Basics of Database Structure
A database is built of records, which in turn are built out of database fields. A field is the
smallest part of a database that can be separately addressed. Each database field contains
a particular kind of information. This might be a name, a file path, a picture, or any other
kind of information. Each record contains one value for each of its fields. A set of records
is called a database table, and one or more tables comprise a database.

Here's an example: suppose you have a database of customers for your business. The
fields of this database might include the customer name, a unique customer ID number,
and shipping address. Each record consists of the information for a single customer, so
each record has a different customer name, shipping address, and so on.

265

Note: You may have noticed that the database structure being described resembles a
multiple-card stack that has the same fields on each card. A database field is like a field
in a stack, and a record is like a card. A stack set up this way can act as a database, in
fact, but lacks some of the features of an external database, such as the ability to perform
SQL queries and the ability to perform robustly when accessed by more than one user.

You can also think of the set of customer records as a grid (like a spreadsheet). Each row
is a record, and each column is a field, so each cell in the grid contains a different piece
of information about a particular customer. Here's an example:
ID Customer Name Address Country
123 Jane Jones 234 E. Street U.K.
836 Acme Corporation PO Box 23788 USA
823 CanCo, Inc. 1 CanCo Blvd. Japan

Figure 58 – Example Database Grid

There are three rows in this grid (each is the record for a particular customer) and four
columns (each is one of the fields).

A row of the database means one single customer record, which has one value for each
field. A column of the database means the set of all values for one of the fields, one for
each record (for example, the set of all customer addresses).

More generally, each row describes one of the things in the database, and each column
describes a particular state for each thing in the database.

The set of all customer records makes a table. Your database might include only this
table, or it might include other related tables, such as a list of all sales. You can also
connect related data from different tables of the same database. For example, if each
record in the Sales table includes the ID number of the customer who bought the product,
you can link all the sales records for a customer to that customer's record in the
Customers table.

8.1.4 SQL and Record Sets – Database Cursors
SQL works primarily with sets of records, rather than individual rows. When you send a
SQL query to a database, the query typically selects certain records which you can
perform further operations on. The set of records resulting from a SQL query is called a
database cursor, or record set. SQL queries let you describe the characteristics of the
records you require, instead of processing each record one by one to find out whether it
matches your criteria.

For example, consider the customer table we talked about in the previous section. To
work with only US customers, you can write a SQL query that selects only records where
the country field is "USA". This subset of records then becomes a record set. You can

266

find out more about the fields and records contained in this record set, and move from
record to record within this subset of the database. You can create more than one record
set to work with more than one set of records at a time.

Note: Different database implementations have different limitations on movement
within a record set. For example, some databases won't let you move backward within a
record set: instead, you must start at the first record and move forward in order to
examine the data.

8.1.5 Choosing a Database
Revolution directly supports the following database implementations:
Oracle
MySQL
SQLite
PostgreSQL
Valentina

Revolution also supports connecting to a database via ODBC. You can use ODBC to use
Access, FileMaker, MS SQL Server and many other database implementations. See
below for more information about ODBC.

Revolution's database commands and functions use the same syntax regardless of what
type of database you are connecting to. You don't need to learn a separate database
language for each type. Instead, when you first open a database with the
revOpenDatabase function, you specify the type as one of the parameters so Revolution
knows what type of database it's dealing with. The Database library handles the details of
each type behind the scenes for you.

When you use the Database Query Builder, you simply select the database type you want
to use. Like the Database library, the Database Query Builder handles the details for you.
You can easily switch between database types.

8.2 Differences Between Editions of Revolution
The level of database access you can use depends on your edition of Revolution.

In the Media edition, database support is limited to demonstration level only. You will be
able to read up to 50 records per session.

The Enterprise edition includes full access to all Revolution's database capabilities for
MySQL, Oracle, PostgreSQL, SQLite and Valentina databases. It also also includes full
access via ODBC.

267

The Studio edition includes full access to Revolution's database capabilities for MySQL,
SQLite, PostgreSQL, and Valentina databases, as well as full access via ODBC, but does
not include direct access to Oracle databases.

The same differences apply to applications you create. Applications created with the
Enterprise edition have access to all database types, including Oracle databases, while
applications created with other editions do not have Oracle access.

8.3 Reasons to Choose a Database Type
Which type of database to choose depends on a number of factors. If you need to work
with an existing database, or already have a database manager installed, the decision is
made for you. Likewise, if you're already an expert at a particular database
implementation, you'll probably prefer to go on using that one.

Another factor is your edition of Revolution. Revolution Enterprise is the only edition
that can access Oracle databases directly (not via ODBC), so if you're using another
edition, you will probably choose MySQL, PostgreSQL, or Valentina.

Other factors in your choice may include price, performance, licensing model
(commercial or open source), and platform support: PostgreSQL does not support Mac
OS, and Valentina does not support Unix. If your users are on a particular set of
platforms, you'll need to choose a database that is supported on all those platforms.
Runtime do not endorse any particular database type, the information provided on the
different types is for informational purposes only.

8.3.1 Overview of ODBC
Open Database Connectivity (ODBC) is a system that allows developers to access any
type of compatible database in a standard way.

To communicate with a database, you usually have to add code that uses the database's
own proprietary protocols. Without ODBC, in order to create a program that can
communicate with--for example--FileMaker, Access, and Oracle databases, Revolution
would have to include code for three different database protocols. With ODBC,
Revolution can communicate with any of these database types using the same code.

ODBC Managers
To work with databases through ODBC, you need two pieces of software: an ODBC
manager, plus a database driver for the specific database type you're using.

Windows 2000 and Windows XP, and OS X version 10.2 and later, include ODBC
software with the operating system. For earlier versions, and for Mac OS and Unix
systems, you can download an ODBC manager and a set of drivers. (See the section
below titled "Software for Database Access" for more information.)

268

8.3.2 Performance for Direct Access Versus ODBC Access
Typically, accessing a database via ODBC takes more configuration and is slower than
accessing the database directly. For this reason, Revolution provides the ability to access
MySQL, PostgreSQL, and Valentina databases (and, for Revolution Enterprise, Oracle
databases) directly without going through the ODBC protocol. This ability will be
valuable for anyone doing complex or extensive professional database work.

The syntax of the functions in the Database library is identical for all database types, so
you do not need to rewrite your scripts to take advantage of the increased efficiency of
direct access.

8.4 Software for Database Access
To provide connectivity to databases, Revolution works with database drivers--software
that translates application requests into the protocol required by a specific database.

8.4.1 Finding Database Drivers
Database drivers for certain database types are included in the Revolution distribution.
(The list of included database types depends on the platform.) The sections below list
which database drivers are included with which platforms.

If you have installed Revolution, you have all the software needed to use the included
database types. For other database types, you will need to obtain the appropriate database
drivers before you can work with those databases.

Important: This section includes links to third-party web sites and contains information
about third-party software. This information is provided for your convenience, but
Runtime Revolution is not responsible for the software packages and sites referenced.
Runtime regrets that it cannot provide any support for installation and configuration of
any databasae.

8.4.2 MySQL
MySQL database drivers are included as part of the Revolution installation on Mac OS
X, and Windows systems.

To download an appropriate MySQL driver for your flavor of Unix, visit the MySQL
web site at http://www.mysql.com/downloads/.

8.4.3 Oracle
Revolution Enterprise includes drivers for Oracle on Windows and (currently) PPC Mac
OS X.

To obtain an Oracle database driver for your platform, visit the Oracle web site at
http://www.oracle.com.

269

8.4.4 PostgreSQL
A PostgreSQL database driver is included as part of the Revolution installation on
Windows systems.

To download an appropriate PostgreSQL driver for OS X or Unix systems, visit the
PostgreSQL web site at http://www.postgresql.com.

Note: PostgreSQL is not supported on Mac OS Classic systems.

8.4.5 SQLite
Drivers for accessing this database are included with Revolution. No additional
installation is necessary.

8.4.6 Valentina Databases and the Valentina engine
Valentina is a fast, efficient single-user database engine for Mac OS X, and Windows
systems.

For detailed information about Valentina, visit the Paradigma Software web site at
http://www.paradigmasoft.com/product/vxcmd.html.

Valentina Demonstration Limits
A demonstration version of Valentina (with a ten-minute timeout) is included in the
demonstration version of Valentina, available for download. Unlike MySQL, Oracle, or
PostgreSQL, Valentina doesn't require additional database server software, so it is all you
need to create and communicate with a database on your system.

To remove the ten-minute timeout from the demo, license the Valentina database engine
from Paradigma Software by going to the Valentina page at
http://www.runrev.com/revolution/info/moreinformation/valentina.html. When you
license Valentina, you receive a serial number. To bypass the timeout, you provide this
serial number when connecting to a Valentina database. See the Revolution Dictionary
entry for the revOpenDatabase function for more details.

The Valentina VXCMD
Valentina is available in several forms. Revolution uses the Valentina VXCMD
technology; the Valentina engine is implemented as an external. You can also access the
VXCMD directly (as described in the Valentina documentation available from
Paradigma) without using the Database library or the Database Query Builder. Using
Revolution's built-in Valentina access offers these advantages over directly calling the
Valentina external from your scripts:

The Database library syntax can be used for all types of databases, so there is no need to
make code changes for Valentina databases.

270

You can pass and retrieve binary data using the revQueryDatabase,
revQueryDatabaseBLOB, and revDataFromQuery functions.

The Database library fully supports binding variable values to a SQL query using the
":number" syntax. See the Revolution Dictionary entry for the revQueryDatabase
function for more details.

8.4.7 ODBC managers and database drivers
To use a database via ODBC, you must install the necessary ODBC software for your
platform. (Some operating systems include an ODBC installation.) ODBC software
includes one or more database drivers, plus an ODBC manager utility.

ODBC on Windows systems
Windows 2000 and Windows XP include the MDAC (Microsoft Data Access
Components) package as part of the standard system installation. To configure ODBC on
Windows systems, use the ODBC Data Sources control panel.

For earlier versions of Windows, you can download MDAC from the Microsoft web site
at http://www.microsoft.com/data/download.htm.

ODBC on Mac OS Classic systems
Revolution supports the DataDirect ODBC software. Versions exist for Mac OS 8.0 and
later. You can download a 30-day trial copy from
http://www.metrotechnologies.com/dvpages/products/datadirect.cfm.

ODBC on Mac OS X systems
OS X version 10.2 and later includes iODBC software as part of the standard system
installation. To configure ODBC on OS X systems, use the ODBC Administrator
application in the Utilities folder.

ODBC on Unix systems
Revolution supports iODBC and UnixODBC on Unix systems. You can download the
iODBC software from the iODBC web site at http://www.iodbc.org/. You can download
the unixODBC software from the unixODBC web site at http://www.unixodbc.org.

Creating a DSN for ODBC access
Once you have installed the necessary software, you use the ODBC manager to create a
DSN, which is a specification that identifies a particular database.

You use the DSN to connect to the database via ODBC. The following example opens a
connection to a database whose DSN is named "myDB":

get revOpenDatabase("ODBC","myDB",,"jones","pass")

To connect to a database using the Database Query Builder, you enter the DSN's name in
the Database Query Builder window.

271

Note: One of the advantages of setting up a DSN is that if you wish to change the
location of the database, you only have to edit the DSN settings, not your application
code. You can think of a DSN as a kind of shortcut or alias to your database.

8.5 The Database Query Builder
The Database Query Builder is a tool you use to create automatic database queries, which
can be used to display data from a database in fields, images, and checkboxes. You can
use an automatic query to select a record set (database cursor), display the data, navigate
between records in the record set, and save changes back to the database.

Setting up and using an automatic database query requires no scripting, so the Database
Query Builder is simpler to use than the commands and functions in the Database library.
With the Database Query Builder, you can easily create form-based front ends to any
supported database.

8.5.1 How the Database Query Builder works
First, you use the Database Query Builder to create an automatic query, which is stored in
the stack. Then you use the Database pane in the property inspector to:

automatically show the data from the query in fields and images
navigate through the data using buttons
update the database when the user changes the data

An automatic query can connect to the database and update the data whenever required,
without any intervention by the user.

Query objects
When you create an automatic query in the Database Query Builder, you specify all the
settings needed to connect to the database and get the data you want to work with. These
settings are stored in the stack, in a query object.

Query objects are implemented as groups that are not placed on any card, and therefore
aren't visible to the user. The settings are stored in the custom properties of the query
object.

Note: You normally work with a query object only in the Database Query Builder
window, and you can usually ignore the fact that it's implemented as a group. However,
if you use a script with a repeat loop that goes through all of a stack's backgrounds, be
sure to skip any backgrounds that are query objects. All query objects have a custom
property named cRevGeneral["databaseQueryObject"] that is set to true, so you can
check this property to find out whether a background is a query object.

272

You can create as many query objects as you want. For example, you might create
several query objects to get different record sets from the same database, and display the
different record sets on different cards.

To make sure no one can access the settings you specify in the Database Query Builder,
when you build an application, check the "Encrypt with password" option on the Stacks
screen in the Standalone Application Settings window. Since the settings are stored in
custom properties--which are encrypted when you choose this option--no one can use a
disk editor utility to find the settings.

Important: Because the Database Query Builder uses the Database library, when you
build a standalone application that uses automatic database queries, make sure to check
the "Database Support" option in the Inclusions section of the General screen of the
Standalone Application Settings window.

Revolution's Database Query Builder is based on the commands and functions in the
Database library. This means that the Database library must be present in order for the
Database Query Builder to work.

The Database Query Builder and the Database pane in the property inspector use the
Database library to work with the database, handling all the details for you. You don't
need to understand the commands and functions in the Database library to create and use
automatic database queries.

8.5.2 Using the Database Query Builder
Before using the Database Query Builder, create or open the stack you want to use with
the database. Then either select an existing Query you created previously from the Query
menu, or create a new Query by pressing the Create button (top right).

If you place more than one object that displays a database field on a card, all the objects
display the data from the current record. This means that you can design a form to show
all the database fields you want to display by placing the appropriate objects on a card.

For example, to display an employee database, you might create fields for the employee's
first name, last name, telephone extension, and department; a checkbox button to show
whether the employee is exempt from overtime or not; and an image to hold the
employee's photograph. When you use the Database pane in each object's property
inspector to specify a query and database field, all the objects show the data from the
current record.

Of course, you can add other objects that don't show database fields, such as label fields,
line graphics, and buttons. By combining the Database Query Builder's ability to display
data with Revolution's other user-interface controls, you can design any type of form you
want.

273

Figure 59 – Database Query Builder (Connection Settings)

Query Selector Select a Query to work on from the current stack.
Mode Selector Select between the Connection panel where you specify the

database location and connection parameters, and the Record Set
where you specify the record set to work with and customize the
SQL used for the Query.

Clone | Delete |
Create

Clone the current Query. Delete the current Query. Create a new
Query.

Name Name the Query. This name should be distinctive, because you'll
select automatic queries by name when setting up objects to display
the data using the Object Inspector.

Type Choose the type of database to connect to. See above for a
discussion of the various different databases types supported by
each edition of Revolution. You must set the database type first,
because some of the other items in this tab change depending on
which type of database you're connecting to.

Host Specify the host name or address.
Port Specify the port to connect on. If you don’t specify a port the

default will be used.
Database Specify the name of the database. This should match a database of

the type specified at the specified address.
User The user name for the database.
Password The password for the database.
Open/Close If the objects that display data from the query appear only on one

274

Settings card, choose "Card opens". In this case, the Query Builder
automatically connects to the database when you go to a card with
objects that use the query. If the objects that display data from the
query appear on all cards in the stack (for example, if you create a
shared group to hold the objects), choose "Stack opens" instead.
The Database Builder automatically connects to the database when
you open the stack that contains the query.

Set the menu labeled "Close connection when" to the same setting
you used for the "Open connection when" menu.

SSL Available only for specific database types, this option secures the
connection using secure sockets layer.

Connect Connects to the database specified. You should press this button
after entering all the information as the Query Builder needs to
connect to the database in order to get information about its
structure. This information is then displayed in the Record Set tab
(see below).

Disconnect Disconnects from the database.
Connect Connects to the database.

Tip: You can test out the database connectivity using the MySQL database "test" with
the password "example and "example" on runrev.com.

Figure 60 – Database Query Builder (Record Set)

Table Select the table from the database you want this Query to work

275

with. This menu will automatically be populated with a list of
available tables when a connection to the current Query has been
opened. If the menu is blank, go back to the Connection tab and
make sure the Query Builder is connected to the database.

Cache record set Caching stores the data from the record set locally in memory, and
automatically closes the record set. This means it doesn't have to
contact the database every time you display a new record. Instead,
it looks up the record in its stored cache. Caching the record set is
particularly useful if you are working with a database
implementation that doesn't allow forward-moving database cursor,
i.e. doesn't allow you to go backward from the current record to a
previous record.

If the record set you're working with is very large, leave the "Cache
record set" box unchecked. Since the cached record set is stored in
memory, caching a record set that's so large that it crowds the
available memory may cause unexpected results.

SQL Query Specifies the actual SQL query to be passed to the database. By
default this will be filled in with an SQL command to access all the
records in the selected table. Alter the query to select only a
specific set of records. The query must be a valid SQL SELECT
statement.

Primary Key A primary key is a database field, or combination of fields, that is
used to uniquely identify each record in the table you're working
with. Database records, unlike cards in a Revolution stack, don't
have names or IDs, so you use the data in the primary key to
identify each record.

To indicate the primary key, choose a database field from the
Primary Key menu on the Record Set tab.

Note that the primary key field must be included in the SQL query
(in the "SQL Query" box). If the primary key field is excluded by
the query, you cannot select it as a primary key.

Databases often include a field that is specifically set up as the
primary key. If you're not sure which field should be used as the
primary key, check with the database administrator or with the
person who created the database.

In some cases, no single database field is used as the primary key.
Instead, a combination of fields is used: no single field is different
for each record, but a combination of two or more fields is different
for each record. To use a combination of database fields as the
primary key, enter the field names, separated by commas, in the
Primary Key box. (Since you're using more than one field, you

276

cannot use the menu. Make sure to spell the field names correctly.)

Important: If you plan to update the database with information from your application, it
is essential to choose a primary key that is different for each record. If you don't specify a
primary key, or choose one that is the same for two or more records, updating the
database will probably corrupt the data.

Refresh query Refreshing the automatic query reruns the query, ensuring that the
data shown is completely up-to-date and reflects any recent changes
you or others may have made to the database.

8.5.3 Displaying Data from an Automatic Query
Once you've set up an automatic database query in the Database Query Builder, you can
set up a field to display the data from the current record or from all the records at once.
You can also display the content of boolean database fields as checkbox buttons, and
display picture data in images.

To set up an object to display data from a database, you use the Database pane in the
object's Property Inspector. The Query Builder will then automatically get the data from
the database field of the current record and puts it into the field. The data is fetched again
every time the field is displayed, so if the database has been updated, the field displays
the updated data automatically.

Figure 61 – Database Pane (Field Property Inspector)

Query Select the Query to link this object to.
Column Select the column (field) in the database to display.
Save options Specify that data entered in the field should be saved back to the

database. The data will be saved back as plain text, Unicode text,

277

HTML or RTF text (using the text, unicodeText, htmlText and
rtfText field properties respectively).

For example, if the "Update after editing" box is checked for a
field, then when the user changes the text in the field, the Database
Query Builder sends the new content to the database, where it
replaces the original content. Similarly, if the box is checked for a
checkbox button, the data in the database is changed when the user
clicks the checkbox to check or uncheck it. If the box is checked for
an image, the data is updated when the user paints in the image with
the paint tools.

Figure 62 – Database Pane (Table Field)

Options for this pane are the same as for the field object above, with the addition of the
column option.

Column In addition to displaying a database field from the current record,

you can display all the records at once, one per line. For example,
you can set up one card to show a list of all records, which the user
can click to view a specific record displayed on another card. To
display the entire record set from an automatic database query,
choose "Show All".

The Query Builder automatically gets the entire record set and puts
it into the field. Records are separated by return characters, and
database fields within a record are separated by tab characters, so

278

the record set appears as a grid: each record is a row and each
database field is a column.

Tip: If "Show All" is selected, the field displays all the database fields specified by the
automatic query's SQL query. To display a different set of fields, create a new automatic
query in the Database Query Builder, with the same connection settings and the same
table, but with a SQL query that specifies the set of database fields you want to show,
and use that automatic query to display all the records.

8.5.4 Linking Other Object Types to a Query
Revolution has a range of options for linking objects to a database.

Push Buttons
Once you've set up objects to display data from an automatic database query, you can
create buttons to control the database. The Query Builder provides pre-scripted actions
for database control, so all you need to do is choose an automatic query and an action.

Note: Adding a database action to a button does not change the button's script. Instead, a
frontScript intercepts the mouseUp message and performs the action, then passes the
message. You can create handlers in the button's script without interfering with the
database action.

Figure 63 – Database Pane (Button Property Inspector)

Query Select the Query to link this object to.
Refresh SQL Refreshing the automatic query reruns the query, ensuring that the

data shown is completely up-to-date and reflects any recent changes
you or others may have made to the database.

Update Record As mentioned previously, you can set up an object to update the
database automatically when the user changes the object's content.
If all the objects the user can change are set to update

279

automatically, you don't need to create an update button.

However, under some circumstances, it is convenient to leave the
"Update after editing" box unchecked, and provide this capability in
a separate button instead. You may want to validate the content of a
field before you allow the database to be updated. (For example, if
the user can edit a telephone number, you might want to check the
format of the number to make sure it's a valid phone number.) Or
you may need to do more complex validation tasks. In this case,
you can perform validation in closeField handlers in the fields, then
create an update button to update the entire record at once.

Move to first
record

Updates all linked objects to show data from the first record.

Move to next
record

Updates all linked objects to show data from the next record.

Move to previous
record

Updates all linked objects to show data from the previous record.

Move to last
record

Updates all linked objects to show data from the last record.

Checkbox Buttons
Options corresponding to those above are available for checkbox buttons. If one of the
database fields in an automatic query's record set is boolean--that is, if the value in the
field can be either zero or 1, indicating false or true--you can display the field's data in a
checkbox button. If the database field's content in the current record is zero (false), the
checkbox is unchecked. If the content in the current record is 1 (true), the checkbox is
checked.

Radio Buttons
To link a group of radio buttons to a database, select the group of radio buttons then open
the Database pane in the Object Inspector. From the Column menu, choose the name of
the database field you want to display. That database field's contents from the current
record are reflected by the hilited radio button in the group. In the Save options, you can
choose whether the database field contains the name or the number of the selected button.

280

Figure 64 – Database Pane (Radio Button Group)

Menu Items
You can either preset menu itemsin the stack itself, or extract the menu items from a
different automated database query.

If you want to preset the menu items in the stack itself, choose "Basic Properties" from
the menu at the top of the property inspector, then fill in the items in the bottom half.
If you want to extract the menu items from a different Query, use the Menu items section
to choose the Query you want to use from the Query menu, then choose the name of the
database field you want to display from the Column menu.

In the Save options, you can choose whether the database field contains the text, the
number or the key value of the selected menu item.

Images
From the Column menu in the Database pane of the Image Inspector, choose the name of
the database field you want to display.

8.5.5 Multiple Queries
You can create as many automatic queries as you want. If two or more automatic queries
have the same connection settings, they use the same connection to exchange data with
the database, so you can set up several automatic queries to work with various record sets
in a database without using more than one connection.

To create a new automatic query to work with the same database, it's convenient to
duplicate an existing query with the required settings, then change only the SQL Query
box. To duplicate an existing automatic query, choose the query you want to duplicate
from the Query menu at the top of the Query Builder, then click the Duplicate button.

281

8.5.6 Extending the Database Query Builder
Revolution allows you to extend the basic functions of the Query Builder by writing your
own SQL commands or complex interface updating routines. See the section Using the
Database Library below for details of the commands available for working directly with
the database. Then see the section on Integrating the Database Library with the Query
Builder for details on how to intercept or initiate actions in the Query Builder by script.

8.6 Using the Database Library
The Database library includes commands and functions to support all aspects of working
with a SQL database, allowing you to control every aspect of working with a SQL
database in detail.

While the Database Query Builder uses the Database library, you don't have to
understand the details of the Database library to use the Database Query Builder.

Use the Database library for more advanced database work, or if you need functionality
that the Database Query Builder does not provide.

8.6.1 Working with the Database library
You use the commands and functions in your scripts to control the database, and use your
application's user interface to display the data and to let the user enter information.

A typical database session includes the following steps:

1. Connecting to the database
To open a connection to the database, you use the revOpenDatabase function. This
function returns a database ID number, which you can use to refer to the database in other
commands and functions.

2. Selecting records with a SQL query
To select the set of records you want to work with, you specify the characteristics of
those records in the form of a SQL query, using the revQueryDatabase function.
This function returns a record set ID number, which you can use to refer to that record
set.

3: Navigating within the record set
You can move among the records you've selected with the revMoveToFirstRecord,
revMoveToLastRecord, revMoveToNextRecord, and revMoveToPreviousRecord
commands.

4. Getting data from the selected records:
To get the data from a field in the current record, use the
revDatabaseColumnNamed or revDatabaseColumnNumbered function.

282

Tip: You can get all the data from the set of records specified by a SQL query--without
creating a record set--using the revDataFromQuery function.

5. Making changes to the database
To change data in the database, you issue SQL statements using the revExecuteSQL
command. If you are using transactions (supported with Oracle, SQLite and Postgres), to
save (commit) changes, use the revCommitDatabase command, and to discard (roll
back) changes, use the revRollBackDatabase command.

6. Closing the database connection
To close the connection to the database and end the session, you use the
revCloseDatabase command.

8.6.2 Database library commands and functions
The Revolution terms in the Database library fall into several categories. Click any term
to see its entry in the Revolution dictionary.

Connecting and disconnecting
revOpenDatabase function: Connect to a database
revOpenDatabases function: Which databases have open connections?
revCloseDatabase command: End a session with a database
revSetDatabaseDriverPath command: set the path to the database drivers
revGetDatabaseDriverPath command: Where are the database drivers?

Getting information and controlling the database
revExecuteSQL command: Execute SQL statements
revCommitDatabase command: Save changes when using transactions
revRollBackDatabase command: Throw away changes
revDatabaseType function: Is this database MySQL, Oracle, etc?
revDatabaseConnectResult function: What was the last connection error?
revDatabaseCursors function: What are this database's open record sets?

Selecting records to work with
revQueryDatabase function: Select records to make a record set

Getting information and controlling a record set
revNumberOfRecords function: How many records in this record set?
revDatabaseColumnCount function: How many fields in each record?
revDatabaseColumnLengths function: What's the maximum field size?
revDatabaseColumnNames function: What are the fields named?
revDatabaseColumnTypes function: What are the field data types?
revDatabaseID function: Which database is this record set in?
revQueryResult function: What was the last query error?

283

revCloseCursor command: Dispose of a record set

Moving between records in a record set
revCurrentRecord function: Which record are we on?
revCurrentRecordIsFirst function: First record in the ecord set?
revCurrentRecordIsLast function: Last record in the record set?
revMoveToFirstRecord command: Make first record the current record
revMoveToLastRecord command: Make last record the current record
revMoveToNextRecord command: Move forward one record
revMoveToPreviousRecord command: Move back one record

Getting data
revDataFromQuery function: Get data without making a record set
revDatabaseColumnNamed function: Get a field in the current record
revDatabaseColumnNumbered function: Get a field in the current record
revDatabaseColumnIsNull function: Is a field set to null (no value)?

Note: The syntax used by the Database library is the same on all platforms, and (as far
as possible) for all databases. Since some databases have more features than others,
however, some commands and functions in the Database library may not be supported
by all databases.

8.7 Integrating the Database library with the Database Query
Builder

As mentioned above, the Database Query Builder uses commands and functions from the
Database library. You can use the Database library to work with databases opened by the
Database Query Builder.

Working with a database requires you to specify the database ID, assigned when the
connection to the database was opened. Working with a record set requires you to specify
the record set ID, assigned when the record set was fetched from the database.

8.7.1 Using Database Library commands and functions with a
Database Query Builder query
All Database Library commands and functions (except revOpenDatabase) require a
database ID to be passed to them to indicate what database is being worked with. This ID
number is returned by the revOpenDatabase function when you connect to a
database.

The Database Query Builder uses the revOpenDatabase function when it connects to
a database, and stores the resulting database ID. To find out the database ID
corresponding to an automatic database query, use a statement like the following:

put revConnectionOfQuery("My Query Name") into myDatabaseID

284

You can then use this ID number with Database Library commands and functions to
control the database or get information about it.

8.7.2 Using commands and functions with a record set
The Database Library commands and functions for working with a record set require a
database ID. This ID number is returned by the revQueryDatabase or
revQueryDatabaseBLOB function when you query a database.

The Database Query Builder uses the revQueryDatabase function when it connects
to a database or refreshes the query, and stores the resulting record set ID. To find out the
record set ID corresponding to an automatic database query, use a statement like the
following:

put revCursorOfQuery("My Query Name") into myRecordSetID

You can use this ID number with Database library commands and functions to get
information about the record set or update it.

8.7.3 Changing the Current Record
To change the record being displayed by the Database Query Builder, use the
revGoToRecordOfQuerycommand. This command takes two parameters, the name
of the query and the number of the record to go to.

revGoToRecordOfQuery "My Query Name",10 -- go to record 10

8.7.4 Retrieving the Current Record Number
To retrieve the current record number from the Database Query Builder, use the
revCurrentRecordOfQueryfunction. This function takes one parameter, the name
of the query.

put revCurrentRecordOfQuery("My Query Name") into tNumber

8.7.5 Counting the Number of Records
To retrieve the number of records in a query from the Database Query Builder, use the
revRecordCountOfQueryfunction. This function takes one parameter, the name of
the query.

put revRecordCountOfQuery ("My Query Name") into \
 tNumberOfRecords

8.7.6 Refreshing the Query
To refresh a query from the Database Query Builder (reload the data from the database,
e.g. if the data may have been changed since it was previously displayed), use the
revRefreshQuerycommand. This command takes one parameter, the name of the
query.

285

revRefreshQuery "My Query Name"

8.7.7 Retrieving the SQL Statement used by the Query Builder
To retrieve the SQL statement from a Query in the Database Query Builder, use the
revGetSQLQueryfunction. This function takes one parameter, the name of the query.

put revGetSQLQuery("My Query Name") into tSQLInUse

8.7.8 Setting the SQL Statement used by the Query Builder
To set the SQL statement being used by a Query in the Database Query Builder, use the
revSetSQLOfQuerycommand. This command takes two parameters, the name of the
query and the SQL to use.

revSetSQLOfQuery "My Query Name", tSQLStatement

8.7.9 Updating the Interface or Performing a Calculation when
Changing Record
To update your user interface or perform a calculation based on the contents of a record
retrieved from the database by changing the current record using the Database Query
Builder, intercept the queryRecordChanged message. This message is sent to the
current card after a new record has been retrieved from the database but before it is
displayed on the screen. This message is sent with a single parameter, the name of the
query.

on queryRecordChanged pQuery
 if pQuery is "My Query Name" then
 -- update the display
 end if
end queryRecordChanged

Note: The screen is locked while this message is sent to allow you to perform a
sequence of updates to the display. You may unlock the screen at the start of this
message handler if you want to make changes to the display live while this handle is
running.

286

Chapter 9 Printing and Reports
Printing is a vital aspect of many applications. Revolution provides a comprehensive set
of printing capabilities. Whether you want a simple print out of your stack, want to print
labels or produce complex reports, Revolution has the features you need.

287

9.1 Introduction to Printing
Revolution supports a number of methods of printing. You can use the print card
command and have Revolution manage the layout of cards on the paper. Alternatively
you can use the print into rectangle commands which allow you to take full control over
the layout of your print out. The former method is most suited to implementing simple
print functionality, while the latter is better suited for more complex layout printing or
printing reports. Finally, you can use the built-in field printing script library to print the
contents of any text field using a simple command.

Revolution also includes a full set of features to access and set printer device options,
including options such as margins, page range and number of copies. On Mac OS X
systems you can also print directly to a PDF file – even without showing the user a print
dialog if choose to. On Windows systems this option will create an XPS file and on Unix
systems a Postscript file. This feature is invaluable if you want to produce a high
resolution file PDF, XPS or Postscript file respectively, from your stack.

9.2 Controlling Printer Device Settings
Revolution gives you full programmatic control over your printer device and any
available settings.

9.2.1 Choosing a Printer
Use the availablePrinters to list the printers available on the user's system.
Printers can include fax modems and networked devices. If the availablePrinters
is empty, no printer is assigned. For example, to place a list of the available printers into a
list field:

put the availablePrinters into field "list of printers"

Set the printerName to the printer you want to use to print. You can use any printer
listed in the availablePrinters. This property is useful when producing an in-
house utility that needs to print to a specific printer on the corporate network, or for
automatically restoring the user's previous printer choice stored in a preferences file.

set the printerName to the cSavedPrinter of stack \
 "My Preferences"

The printerFeatures provides a list of the features supported by the currently
selected printer. Features will vary widely from device to device, but typical features may
include things such as "collate", "color" and "duplex". Use this property to enable and
disable output options in any custom printer settings dialog.

9.2.2 Choosing Output Mode (e.g. Print to File)
The printerOutput global property allows you to choose the output mode for
subsequent printing commands. This property is set by the system to the default printer

288

on startup and will be changed if you open a system print dialog in which the user
chooses a different printer. If this property is set to device it will output to the physical
printer. Alternatively, you can set it to a file path to print to a file. On Mac OS X this will
create a PDF file, on Windows an XPS file and on UNIX a postscript file. On Mac OS X
you can set this to preview to create a preview.

For example, to save the current card to a file:

ask file "Save as:
set the printerOutput to ("file:" & it)
print this card

9.2.3 Working with Printer Dialogs
In most applications that need to print, you will want to provide a way to bring up the
standard OS Print and Page Setup dialogs. Typically you would make these dialogs
available from Print and Page Setup items in the File menu of your application. When the
user makes changes in these dialogs the changes are made accessible to you in global
properties. We discuss how to save and utilize these properties below.

Note: It is not necessary to bring up the standard OS dialogs to alter printer settings.
You may set the appropriate printer setting directly by script instead.

Note: On Linux & Unix systems you will need a recent version of GTK installed in
order to display the OS printer dialog. If you don't have this installed, Revolution will
display its own printer dialog which has been built as a stack and script library. This
dialog mimics the standard system printer dialog and sets the Revolution printing global
properties directly.

Tip: You may force Revolution to use its own internal print settings dialog by setting the
systemPrintSelector global property to false. Advanced users may customize
the printer dialog that Revolution uses by running toplevel "print dialog" or
toplevel "page setup" in the Message Box. Remember to save a copy of the
stack as it will be overwritten each time you upgrade your copy of Revolution.

Important: The Revolution print and page setup dialogs must be included in a
standalone application if you use them. Ensure that the check box Print Dialog is turned

289

on in the Standalone Application Settings dialog for your application. You do not need to
include these dialogs if you only use the OS native print dialogs. For more information
on including resources in your standalone application, see the chapter on Building
Standalone Applications.

To bring up the standard OS printer dialog, use the answer printer command.

answer printer

If the user does not press the cancel button then any changes to the printer settings will be
reflected in the global printing properties, discussed below.

To bring up the standard OS page setup dialog, use the answer page setup
command.

answer page setup

9.2.4 Saving Printer Settings
To save or set a complete set of options relating to the current printer which includes
every setting in the OS Page Setup and Print dialogs, use the printerSettings
global property.

The printerSettings property is a binary string that completely describes the
current settings. The property contains the name of the printer and the settings currently
in use.

Caution: You should not attempt to modify the printerSettings but rather get and set it
in its entirety. To access individual printer properties, use the global printing properties
described below.

When you set the printerSettings property to a saved value, Revolution will
choose the printer named in the property and set all of its settings to those contained
within the property. If the printer cannot be found Revolution will return the error
"unknown printer" in the result. If the printer is found but the settings are not valid then
Revolution will choose the printer and reset it to default values.

Note: You must save a separate copy of the printerSettings property for each printer or
OS you intend to use. The printerSettings property cannot be transferred between
platforms. For example, a printerSettings property generated on a Windows computer
cannot be used on Mac OS X – even for the same printer. If you want to alter settings
across different platforms and printer types use the global printing properties described
below. Use the printerSettings for convenience when you know you will be using the

290

same printer and want to save all the settings, or where you are setting esoteric properties
not listed in the global printing properties described below.

To save the current printer settings into a custom property stored on the current stack:

set the cSavedPrinterSettings of this stack to \
 the printerSettings
save this stack

Then to restore these settings:

set the printerSettings to the cSavedPrinterSettings \
 of this stack

9.3 Paper Related Options
This section discusses how you get and set paper related options – the rectangle area of
the paper, the paper size, the orientation and the scale to use to print onto the paper.
These paper options apply to all types of printing, i.e. card, field and layout printing.

Use the printRectangle to get the printable rectangle area within the paper (returned
in device co-ordinates). This property takes into account any settings applied by the user
in the Page Setup and Printer dialogs including the print orientation (e.g. landscape or
portrait). The rectangle is represented left,top,right,bottom and is always relative to the
top left of the page – thus the top left will always be 0,0. The printRectangle will always
be within the printPaperRectangle – the rectangular area of the sheet of paper.

Note: The printRectangle property is read only and cannot be set directly – to
alter it you must set other options relating to the paper, for example the
printPaperOrientation (discussed below).

Important: Do not confuse the printMargins and other card layout printing
properties with paper properties such as the printRectangle. The
printMargins only applies to printing cards using Revolution's automatic card
layout capabilities (discussed below). Thus the printMargins has no effect on
printRectangle.

Use the printPaperOrientation to get and set the orientation of your print out.
This property may be set to one of the following values:

portrait: rotated 0 degrees.
landscape: rotated 90 degrees clockwise.

291

reverse portrait: rotated 180 degrees clockwise.
reverse landscape: 270 degrees clockwise.

set the printPaperOrientation to "landscape"

Use the printPaperScale property to apply a scale factor to your print out after all
other settings have been taking into account.

Note: The printPaperScale is applied after all other layout and scaling options.
For example, if you have used the layout printing features to print a series of cards at
50% scale, then set the printPaperScale, this factor will be applied to the entire
layout after the card layout scaling has been calculated.

To print a range between 1 and 100% set the printPaperScale to a number between
0 and 1. To print at 200% set the printPaperScale to 2.

set the printPaperScale to 0.5 -- 50%

9.4 Job Related Options
This section discusses how to get and set job related options – the number of copies,
duplex printing, collation, color, title and printable area.

Important: The available job options all depend on what the currently selected printer
supports (use the printerFeatures property, described above, to retrieve a list of
features supported by the current printer).

Use the printCopies property to get and set the number of copies to print. The
printCopies should be set to a value of 1 or more.

set the printCopies to 5 -- print 5 copies

Use the printDuplex property to tell the printer to print double sided. This property
may be set to any of the following values:

none: no double-sided printing
short edge: double-sided printing with tumble (flip the non-facing page)
long edge: double-sided printing without tumble.

set the printDuplex to "short edge"

Use the printCollate property to specify whether to interleave multiple copies of a
print job. If a print job has three pages, P1, P2 and P3, with printCollate set to true

292

and printCopies set to 2 the output order will be P1, P2, P3, P1, P2, P3. With
printCollate set to false the output will be P1, P1, P2, P2, P3, P3.

set the printCollate to true

Use the printColors property to specify whether to print in color or not. If "color" is
not among the lines of the printerFeatures then this property will have no effect
and all print jobs will be printed in monochrome. This property may be set to either true
or false.

For example, to check if color printing is supported on the current printer and use it if it
is:

if "color" is among the lines of the printerFeatures then
set the printColors to true

Use the printTitle property to specify the name of the next print job in the system
printer queue. Setting this property to match the name of the user's document will ensure
that the user is able to recognize it in the system printer queue utility. If the
printTitle is empty at the start of a printing loop, the title of the defaultStack
will be used.

set the printTitle to "My Report 1"

Use the printRectangle property to determine the printable region of the physical
page as returned by the printer. This rectangle will always be contained within the
printPaperRectangle. Thus you should use the printRectangle and not the
printPaperRectangle when calculating a print layout. The
printPaperRectangle is useful if you are generating a print preview and want to
show the entire area of the paper including any margin areas that cannot be printed on.
This property is read only and cannot be set directly.

9.4.1 Printer Font Metrics (Windows)
Windows systems sometimes use different versions of the same font for displaying text
on screen and printing. This can result in layouts and line breaks differing between the
screen display and the printed output. To prevent this from happening, you can tell
Revolution to use the printer fonts for display on screen. To do this, set a stacks
formatForPrinting property to true.

Do:

Set the formatForPrinting stack
property to true before loading a stack in
memory. If the stack is already loaded,
set this property to true then save and
reload it. (Save then use Close and

Don't:

Allow the user to directly edit text in fields
whose formatForPrinting is set to
true. Attempting to do this may cause
display anomalies. Set this property to false
and reload the stack first.

293

Remove from Memory in the File menu).

Create a stack off screen (with
formatForPrinting set to true)
with your print layout template and copy
text into it prior to printing.

Set the formatForPrinting before
doing any print layout related
calculations on the stack.

Set the formatForPrinting to true
on any print preview stack being
displayed to the user.

Generally use stacks with
formatForPrinting set to true for
display on screen, as this will show text that
has been optimized for print display (instead
of screen display), which is harder to read
on screen.

Use this property on other platforms –
Windows is the only platform that uses
different fonts on screen vs. in a print out.

Use the windowBoundingRect
property to constrain display of a stack
who's formatForPrinting has been set
to true – this property will be ignored when
the stack is opened or maximized.

Figure 65 – Dos and don'ts of printer font metrics on Windows

9.5 Printing a Card
Once you have set your printer, paper and job options (above) you are now ready to use
one of the print commands to start printing. At its simplest, the print card command
allows you to print a card. Later we will discuss ways of printing more complex layouts,
fields and text.

print this card -- prints the current card
print card 12 -- prints card 12

For more details on how to specify which cards to print, see the print command in the
Revolution Dictionary.

To print a scale between 1 and 100% set the printScale to a number between 0 and 1.
To print at 200% set the printScale to 2.

Important: The printScale applies to each card that you print. It is not related to
the printPaperScale which is applied to the entire print job after all other scaling
calculations have been applied. Thus you may set the printPaperScale to 0.5 to
print at 50%, then print individual cards at different printScale values. With a
printPaperScale of 0.5, a printScale of 2 would result in that card being
printed at 100%.

When printing a card, use the printMargins to specify the margins around the border
of the card on the page.

294

Note: When calculating placement on the printed page, all calculations assume that
there are 72 dots per inch – regardless of platform or printer device. Revolution will
automatically adjust the print out for resolution of the actual device. This makes it simple
to calculate your printed layout.

-- a one-inch margin on each side
set the printMargins is set to 72,72,72,72

Important: printMargins only applies when using print card directly. It does not
have any effect on printing cards into a layout (described below).

The printCardBorders property specifies whether or not the bevel border around
the edge of a card should appear in the print out.

9.5.1 Card Layout Options
When using the basic print card form of the print command, there are two layout options
that allow you to customize the positioning of cards on the printed page. If you require
further flexibility, see the section on printing a layout, below.

Use the printRowsFirst property to specify whether cards should be printed across
and down or down then across.

Consider a simple example of printing multiple cards – this example is useful for printing
labels. In this example we have a stack that contains 8 cards, each one containing a
mailing label. If you want to try out this example:

• Create a stack and size it to be small – the size of a mailing label
• Create a single field, and in the field Inspector turn off the Shared Text property
• Group the field and in the group property Inspector turn on Behave as

Background
• Turn on Select Grouped on the Toolbar and select the field
• Place the contents of the first mailing label into the Contents tab of the Inspector
• Create 8 more cards, and in each select the field and place the contents of a

different label

Thus we have a stack that looks like the figure below.

295

Figure 66 – Print label stack example

Now we will implement the printing commands. If this was a real application you would
probably want to put these in a Print command in the File menu. In this instance you may
execute the following in the multi-line message box (open the Message Box then press
the second icon to get the multi-line pane).

-- allow the user to choose printer output options
answer printer
print 9 cards

Press enter to execute the commands.

The resulting print out will look like the figure below.

Figure 67 – Printing 9 label-sized cards with default settings

296

If we modify the print commands to include an additional line to turn off the
printRowsFirst:

answer printer
set the printRowsFirst to false
print 9 cards

The resulting print out will look like the figure below.

Figure 68 – Printing 9 label-sized cards with printRowsFirst set to false

Use the printGutters property to specify the margin between each card. By default
the printGutters are set to 36,36 or one half inch horizontally and vertically.

In the following example, we print the same label stack but reduce the space between
each label to 1/10th of an inch. To make it easy to see the differente we also turn on
printing of card borders using the printCardBorders property.

answer printer
set the printGutters to 7,7
set the printCardBorders to true

297

print 9 cards

The resulting print out will look like the figure below.

Figure 69 – Printing 9 label-sized cards with borders and a narrow gutter between

each

9.6 Printing Fields & Text
To print a field, use the revPrintField command. This command takes a single
parameter, a reference to a field. This command only allows printing a single field. If you
need to include a header and footer or text you have constructed programmatically, see
the revPrintText command below.

revPrintField the long id of field "text document"

Tip: revPrintField is implemented as a script library located in the Revolution
IDE. The script library creates an invisible stack, sets the rectangle of that stack to the
current paper size, sets the formatForPrinting to true, creates a field, then copies
the contents of the field you specify into this invisible stack. It then prints the field one
page at a time, scrolling the text after each page. Advanced users can locate this library
script by going to the Back Scripts tab in the Message Box, turning on the checkbox for

298

Show Revolution UI Back Scripts, then editing the script of button "revPrintBack". The
revPrintField handler is near the top of the script.

Use the revShowPrintDialog command to control whether the system printer and
page setups dialogs should be shown by revPrintField or revPrintText.

-- show the system printer dialog, but not page setup
revShowPrintDialog true, false
revPrintField the long id of field "text document"

Use the revPrintText command to print plain or styled text together with an optional
header and footer.

revPrintText textToPrint [,headerText [,footerText
[,fieldTemplate]]]

The textToPrint is anything which evaluates to a string. If you want to printed styled text,
pass HTML instead of plain text. (To convert a field containing styled text to a HTML
use the htmlText property.)

The headerText and footerText contains the text to use as a header and footer. You may
include an expression that is computed for each page. For more details on using
expressions, see the Revolution Dictionary entry for revPrintText.

The fieldTemplate parameter allows you to specify a field reference to use. Fonts in the
print out will be inherited from this field.

9.7 Printing a Layout
If you need to print a more complex layout than allowed with the basic print card
command or text printing commands (described above), you can use the print card
into rect syntax to create any sort of layout you choose.

print card from topLeft to rightBottom into pageRect

The topLeft is the top left coordinate of the current card to start printing at.

The rightBottom is the bottom right coordinate of the current card to stop printing at.

The pageRect is the rectangular area on the paper to print into.

Important: printMargins only applies when using print card directly. It does not
have any effect on printing cards into a layout. Use the printRectangle to get the
printable area when working with layout printing.

299

For example, lets say that we want to print the text field from the middle of the stack in
figure 73 below. (You can load the stack shown in the picture by going to your
Revolution installation folder then opening Resources-> Examples-> SQLite
Sampler.rev.) We want the output to scale to take up the entire width of the paper and
half the height.

Figure 70 – Stack with text field to print into a layout

print this card from the topleft of field "theText" \
 to the bottomRight of field "theText" into \
 0,0,item 3 of the printRectangle, \
 round(item 4 of the printRectangle / 2)

This results in the print out shown in figure 74 below.

300

Figure 71 – Result of layout printing command

You can construct a complex layout taking components from multiple stacks by printing
a sequence of rectangles onto the same page. For example, you may have a stack that
contains a standard header and footer, another that contains a logo, and a layout that
contains text. Use the open printing command to start a print job, then print each
element into the appropriate rectangle on the paper. The use then close printing
command to send the print job to the printer. The example in figure 75 below shows two
stacks with printable regions that we want to combine onto a single sheet of paper.

301

Figure 72 – Separate header and body stacks to print into a layout
To print these onto a single sheet:

answer printer -- show the system print settings dialog
open printing -- start a print job
-- work with the header stack
set the defaultStack to "header"
-- print the header field onto the top left of the paper
print this card from the topLeft of field "header" \
 to the bottomRight of field "header" into \
 the rect of field "header"
-- save the bottom of the header
put the bottom of field "header" into tHeaderBottom
set the defaultStack to "report editor"
-- print the table field below the header
print this card from the topleft of field "report table" \
 to the bottomRight of field "report table" into \
 0,tHeaderBottom,the right of field "report table", \
 the bottom of field "report table" + tHeaderBottom
-- send the job to the printer
close printing

Figure 73 – Result of layout printing command with multiple stacks

9.7.1 Printing a complex layout
To print a more complicated layout, create a stack and set its rectangle to the current
printRectangle. Add rectangular areas for each component you will be printing.

My Expense Report

A 78 423 3

B 23 423 423

C 23 76 8

302

Then set Geometry properties (see the section on the Geometry Manager, above for more
information) on each of these rectangles so they resize correctly when the stack is scaled.
Set up your print routine so that you open this stack invisibly then resize it to the
printRectangle. This will trigger the geometry routines and scale the rectangular
areas correctly. Then run your sequence of print commands to print into each rectangle.

In figure 77 below, we have set the size of the stack to the printRectangle then
added 4 rectangle graphics. We have named each graphic and turned on the Show Name
property for each so you can see the name.

Figure 74 – Stack template for printing a layout

Next, we set Geometry properties for each of the rectangle graphics. The header graphic
is set to scale relative to the right and bottom, with a minimum size limit of 100 pixels
(see figure 75 below). The body graphic is set to link the top edge to the header graphic,
the right and bottom to the stack (see figure x below). The footer 1 graphic is set to scale
the right edge and position the bottom edge. And footer 2 is set to position both the right
and bottom.

303

Figure 75 – Example geometry properties for print layout stack

To make the printing template stack take on the size of the paper, we can add the
following handler to the stack script:

on preOpenStack
 set the width of this stack to (item 3 of the \
 printRectangle - item 1 of the printRectangle)
 set the height of this stack to (item 4 of the \
 printRectangle - item 2 of the printRectangle)
end preOpenStack

We now have a working print template stack. All that remains is to write the script that
prints into the rectangles:

-- prepare to load this stack off screen
hide stack "print layout"
-- this will trigger the stack to resize, which run the
geometry routines, giving us the correct values for each
rectangle
go stack "print layout"
-- now we store these rectangle coordinates in variables
put the rect of graphic "header" into tHeaderRect
put the rect of graphic "body" into tBodyRect
put the rect of graphic "footer 1" into tFooter1Rect
put the rect of graphic "footer 2" into tFooter2Rect

304

-- we can close the layout stack as its no longer needed
close stack "print layout"
-- load the system printer dialog to allow the user to
choose number of copies, etc.
answer printer
-- start the print job
open printing
-- set the stack we are working on to a stack containing
the header
-- you could use any stack or region within a card here
set the defaultStack to stack "header graphics"
-- print from the rectangle of our header group into the
rectangle we stored earlier
-- we could use a graphic or any rectangular area instead
of a group
print this card from the topLeft of group "header" to the
bottomRight of group "header" into tHeaderRect
set the defaultStack to "body contents"
print this card from the topLeft of group "body" to the
bottomRight of group "body" into tBodyRect
set the defaultStack to "footer1"
print this card from the topLeft of group "footer1" to the
bottomRight of group "footer1" into tFooter1Rect
set the defaultStack to "footer2"
print this card from the topLeft of group "footer2" to the
bottomRight of group "footer2"
-- send the print job to the printer
close printing
-- check to see if the user cancelled or there was an error
if the result is “cancel” then
 -- insert any code you need here to handle cancellation
else if the result is not empty then
 -- bring up an error dialog
 answer “Printer Error”
else
 -- insert any code you need here to handle success
end if

For more information on how to print multiple pages of a complex layout, see the section
on Printing Multiple Pages, below. For information on printing scrolling text fields into
an area within a layout, see the section on Working with Scrolling Fields when Layout
Printing, below.

9.8 Printing Multiple Pages

9.8.1 Multiple pages using card printing
To print multiple pages when printing cards, simply specify which cards you want to
print as part of the print command.

305

print {range}

Examples:
-- prints the current card
print this card
-- prints all cards in the current stack
print all cards
-- prints the next 10 cards, starting with the current card
print 10 cards
-- prints card 3 to 7 of the current stack
print card 3 to 7 print marked cards
-- prints all cards where the mark property is true
print marked cards

9.8.2 Multiple pages when using layout printing
To print multiple pages when printing layouts, use the open printing command to
open a print job. Then print the layout for the first page (see above). Then use the print
break command to insert a page break into the print job. Then lay out the second page
and so on. Finally, use the close printing command to send the print job to the
printer.

9.8.3 Working with Scrolling Fields when Layout Printing
To print a single scrolling text field, use the revPrintText command (see above for
more information). If you want to incorporate the contents of a scrolling field within a
layout, use the pageHeights property to scroll the field each time you print a page,
then print break to move to the next page.

The pageHeights returns a list of values to indicate how far a scrolling field needs to
be scrolled to avoid clipping a line of text on each page of your print out. (You should
use this feature in conjunction with the formatForPrinting property, above.)

-- store a list of pageHeights
put the pageHeights of field "body text" into tHeightsList
-- scroll the field to the start
set the scroll of field “body text” to 0
-- start the print job
open printing
repeat for each line l in tHeightsList
 -- clip the field to the bottom of the last visible line
 set the height of field “body text” to l
 -- print the field rectangle
 -- you may want to add an output "into" rectangle
 print this card from the topLeft of field "body text" \
 to the bottomRight of field "body text"
 -- print a new page
 print break

306

end repeat
-- send the job to the printer
close printing

Important: Set the Lock Location (lockLoc) property of the field to true before
setting the height in the loop above to avoid the field “drifting” each time you alter the
height.

Tip: Turn off the scroll bar properties (hScrollbar and vScrollbar) of the field
before printing and set the border width to 0 if you want to avoid printing a border or
scroll bar.

Tip: You can incorporate scrolling fields into a template print layout stack (see the
section Printing a Complex Layout above) to make it easier to manage printing a
complex layout. Create a field in your template print stack instead of a graphic, turn off
the scroll bar, set the border width to 0, the lock location to true and then the geometry
properties as per the section above. At the start of each print job, copy the text font and
size by using the textFont and textSize properties, then the contents of the text
field you want to print using the htmlText property.

9.8.4 Working with Print Ranges
Use the printRanges property to get a list of pages that the user has selected in the
printer settings dialog. Use this property when printing to avoid printing pages the user
has not selected. To use this property, open a system printer dialog, then store the
printRanges in a variable. Then set the printRanges to "all", then send only the
pages that were selected (stored in the variable) to the printer.

Note: If you ignore the printRanges property Revolution will handle this setting
automatically. Simply send every page to the printer as normal and Revolution will
ignore the pages the user has not selected in the print dialog. Handle this option manually
only if you are printing an extremely complex layout and want to save processing time
building the layout for every unselected page.

Use the printPageNumber to get the number of the page currently being printed
during your printing loop.

307

9.9 Printing a Browser Object
To print the contents of a browser object, use the revBrowserPrint command. For
more information, see the revBrowserPrint command in the Revolution Dictionary.

308

Chapter 10 Deploying Your Application
With Revolution, it is easy to deploy your application to anyone. Revolution supports
many modern operating systems, and with its standalone building capability you can
create a native application for each operating system you want to support. Users who do
not have Revolution can run these applications like any other application they download
and install. Standalone applications can have their own identity as true applications,
include a desktop icon, document associations and more.

Alternatively, you can distribute your stacks using the freely available Revolution Player
application. This is a convenient option that allows the end user to install the Player once
then download and run your stacks. The Player is the only option for distributing stacks
created with Revolution Media.

309

10.1 Building a Standalone Application
When you have finished your Revolution application and what to distribute it you can
build it into a standalone application. These applications do not require users to have
Revolution. All of Revolution's feature set is available for use in a standalone application,
with the exception that you cannot set scripts on objects; or load stacks created in
Revolution Media; the standalone builder is available in Revolution Studio and
Enterprise editions only.

The builder itself will let you build standalone applications for any platform it supports,
from any platform it supports (for example you can build a Windows standalone on a
Mac Os X machine). However, you may wish to check that your application looks and
behaves correctly on each platform you intend to support. Please note it is inherently
harder to debug an application that has been built as a standalone, so you should test your
application as thoroughly as possible before building it.

10.1.1 Standalone Applications Settings
The Standalone Applications Setting dialog allows you to create settings for your
standalone application. This dialog can be found in the File menu. The settings you enter
are applied to the current front most editable stack and are saved with the stack. This
means you only need to enter the settings once for each application you create. The same
settings will apply if you do another build in the future.

310

Figure 76 – Standalone Settings – General Tab

Mode Selector Choose between the different standalone application settings

screens.
Standalone Name Set the name of your standalone application. This should be the

name you want your finished application to have. Don’t include a
file extension (.exe on Windows or .app on Mac OS X) as the
standalone builder can create standalones for multiple platforms
and will add the appropriate extension automatically.

Inclusions
Selector

Choose the components you want to include in a standalone. You
may either choose to search for required inclusions automatically,
or manually select the components you want to include.

Search for Inclusions
This is the default option. When selected, Revolution will search your application stack
file (main stack and sub stacks) to attempt to determine what components your
application uses. It will then include those items.
Select Inclusions for the Standalone Applications
Select this option if you want to specify the components to include manually. You may
wish to use this option if your application dynamically loads components that cannot be

Mode Selector

Standalone Name

Inclusions Selector

Profiles Settings

311

searched at this point automatically, or if you know exactly what components your
application uses and wish to speed up the standalone building process by skipping the
automatic search step.
It is important that you choose to include all the components that your application uses or
it may fail. If you do not include your own custom error reporting or Revolution’s
standalone error reporting dialog (discussed below) such failure may be silent – i.e. an
operation in your standalone will simply cease working without displaying anything to
the user.

Ask Dialog This option is required if any of your scripts use the "ask" or "ask

password" commands. The standalone builder will copy the stack
"ask dialog" from the IDE into your standalone as a sub stack. The
standalone builder makes a copy of your stack before adding
resources to it as part of the build process, so your original stack is
unaltered.

Answer Dialog This option is required if any of your scripts use the "answer"
command. Note that this only applies to the dialog form of the
command. The answer file / printer / color / effect / folder / page
setup / printer and record forms of the command do not require
this option. The standalone builder will copy the stack "answer
dialog" into your standalone.

Cursors This option is required if your application uses any of
Revolution's cursors. It is not required if your application only
uses OS cursors. It copies the stack "cursors" into your
standalone.

Print Dialog This option is required if your application uses Revolution's built-
in print or page setup dialogs (e.g. for use on Linux without GTK
installed). It is not required if you only display the system printer
and page setup dialogs. It copies the stack "print dialog" and
"page setup" into your standalone.

Brushes This option is required if your application uses any of
Revolution's brush cursors. It is not required if your application
does not make use of the painting commands. It copies the stack
"brushes" into your standalone.

Script Libraries This option allows you to copy script libraries into your
standalone.
The list of available libraries is automatically updated to include
any plug-in libraries or externals you may have installed into the
Revolution distribution. Thus the list you have may differ from
what is documented here.

When included in a standalone application, each script library is
implemented as a hidden group and made available when the
group receives its first openBackground message. During the
first part of the application startup process before this message is
sent, any commands that use a given library will not be available.

312

This may affect attempts to use this a script library in startup,
preOpenStack, openStack, or preOpenCard handers in
the main stack. Once the application has finished starting up, the
library is available and the script library can be used in any
handler.

Animation
Browser
Database
Font Support
Geometry
Internet
Printing

Revolution Zip

Speech
SSL & Encryption
Table
Video Grabber
XML
XMLRPC

This library is unsupported.
Embedded browser and any revBrowser command.
Database access and any revDatabase command.
revFontLoad and revFontUnload.
Geometry properties or commands.
Internet access, including URL, ftp & POST
revPrintField, revShowPrintDialog and
revPrintText
All revZip commands (but not required for
compress/decompress)
revSpeak and revSpeechVoices
Any SSL or encryption related commands (Enterprise only)
Use of the table object
Any video capture commands
Any revXML commands
Any revXMLRPC commands

Database Support This option is required if you use SQL databases. Ensure you
choose to include drivers for any database you need to access.

Profiles Settings Choose between the Property Profile settings options. You only

need to alter settings in this area if you have used Property Profiles
(see the section on Property Profiles in Chapter 4, Builder a User
Interface above)

Remove all
profiles

Removes all profiles and builds the standalone using the currently
active profile on each object. Select this option if you don't need to
change profile in the standalone and want to save disk space by
removing extraneous profile information.

Set all objects to
profile

Set all objects to a specific profile then remove the profile data
from objects.

Include profiles
and the profile
library

Include the profile library and allow switching between profiles in
the standalone application. You can choose whether to include
specific profiles or all profiles.

313

Figure 77 – Standalone Settings – Stacks Tab

Stack Files Use this section to add additional stack files to your application.

Any stacks you add to this section will be added to the
stackFiles property of the main stack of your standalone. This
means that any scripts within your standalone application will be
able to locate and reference these stacks by name.

Advanced
Options

Use this section to control exactly how multiple stack files are
managed in your standalone.

Move substacks
into individual
files

If you select this option, each of the sub stacks in the stack files you
select will be moved into their own individual file, located in the
data folder or within the application bundle of your standalone.

Rename stackfiles
generically

Renames each sub stack file using a number on disk (instead of
using the name of the sub stack). Select this option if you do not
want the names you have selected for stacks to be visible to the end
user in the filing system.

Create folder for
stackfiles

Creates a folder and places the stack files into that folder, instead of
storing them at the same level as the standalone executable. All
references in the stackFiles property will refer to this folder
using a relative path so the stacks can still be located by the
standalone application.

Individual stack
options

Select a stack file on the left then an individual stack from within
the file to set options on that stack.

Set destroyStack Set this option if you want the selected stack file to be removed

Stack Files

Advanced Options

314

to true from memory when it is closed. This option is useful if you are
loading large stacks into memory and want them to be removed
when they are closed.

Encrypt with
password

Secures the scripts within the selected stack file with a password.
This provides a basic level of encryption that prevents someone
from casually reading the scripts in the stack by opening the file in
a binary file viewer.

Note: A stack file directly attached to a standalone application cannot have changes
saved to it. This stack is bound directly to the executable file that runs. The OS locks an
executable file while it is running. If you want to save changes in your standalone
application, split your stack up until multiple files. A common technique is to create a
"splash screen" stack that contains a welcome screen and then loads the stacks that make
up the rest of your application. These stacks are referenced as stackFiles on this
pane in the standalone settings screen. It is thus possible to automatically update these
component stacks, or to save changes to them. You may also want to consider creating
preference files in the appropriate location on your end user's system (see the
specialFolderPath function and query/setRegistry functions for more
information).

Figure 78 – Standalone Settings – Copy Files

Non-stack files in List other files to be included in the standalone. Use this feature to

315

the application include help documents, read me files and other resources that you
want to include with your standalone each time you build.

Copy Referenced
Files

Loops over all image and player objects in stacks and copies any
files referenced in the fileName property of these objects into the
standalone. Then automatically sets the fileName property to
reference these files in the standalone using referenced file paths.

Destination folder Create a subfolder within your standalone to copy the image and
movie files to.

Figure 79 – Standalone Settings – Mac OS Classic

Build for Mac OS Builds a standalone for the Mac OS Classic platform. Note that this

build option uses the Revolution 2.6.1 Classic engine. All of the
settings on this pane relate only to the standalone built for Mac OS
Classic. They do not affect the other platforms.

Creator signature Set the creator type for your application
Document type Set the document type for your application
Include resources
from file

Copy resources from a specified resource file into the resource fork
of your standalone

Use dynamic
memory
allocation

Use the dynamic memory allocator on Mac OS Classic

Minimum / Set the minimum and preferred size for your application. Ensure

316

preferred size this is enough to load your application. If you have turned off
dynamic memory allocated, ensure this is enough to load all the
resources in your application and use the entire feature set

Version number Set the version number, displayed in the Get Info window
Long version
string

Set the version information string, displayed in the Get Info
window

Release Specify the release type
Region Specify the region
Non-release Specify the non-release version number

Important: Because the build for Mac OS Classic option builds using the Revolution
2.6.1 engine, you must make sure that your stack does not use any newer features that
would cause the scripts not to compile. The standalone builder automatically saves the
stack in legacy 2.6.1 format but does not check your scripts. You should check your
stack with a version of the 2.6.1 IDE and use this facility to build for Classic on stacks
that you know are compatible.

317

Figure 80 – Standalone Settings – Mac OS X

Mac OS X
(Universal)

Build a standalone for Mac OS X in universal binary format. This
standalone will run natively on both Intel and PowerPC machines.

Mac OS X
(PowerPC Only)

Build a standalone that will run natively on Mac OS X PowerPC
machines. This standalone will still run on Intel machines, but will
load under Rosetta (emulation) so will run much slower. Choose
this option if you want to keep the file size of your standalone down
(e.g. to upload smaller PowerPC and Intel distributions for your
users to choose from and download).

Mac OS X (Intel
Only)

Build a standalone that will run natively on Mac OS X Intel
machines. This standalone will not run at all under PowerPC.

Application Icon Choose an application icon to represent the application in the
Finder. The icon should be in icns format.

318

Document Icon Choose a document icon to represent your application's documents
in the Finder. The icon should be in icns format.

Icons for ask /
answer dialogs

Choose an icon to display whenever you use the ask or answer
commands to display a dialog. On Mac OS X, the convention is that
these dialogs should display your application icon. The icon should
be stored in your stack as an image, or selected from Revolution's
built-in icons. If you have used a built-in icon, be sure to select the
relevant inclusion on the General tab (if you are selecting inclusions
manually).

PLIST – enter
information and
have Revolution
write the PLIST

Have Revolution fill out the PLIST for your application
automatically. The PLIST is a settings file stored in XML format
stored as part of every Mac OS X application. It contains
information about the application, including its name, version
number, copyright notice and document associations. Having
Revolution create this file for you is the recommended option. For
more information about PLISTs see
http://developer.apple.com/documentation/
Darwin/Reference/ManPages/man5/plist.5.html

Choose a file to
import into the
application
bundle

Choose to import a PLIST file instead of having Revolution create
one. Select this option if you have created your own highly
customized PLIST that you want to use for your application in each
build you create.

Short version /
long version

The version information to be included with your standalone.

Get info string The visible text displayed in your application's Get Info window by
the Finder.

Copyright notice The copyright notice for your application.
Bundle identifier A unique identifier for your application used by Mac OS X to

identify your application.

319

Figure 81 – Standalone Settings – Windows

Build for
Windows

Build a standalone for the Microsoft Windows OS.

Application icon Choose an application icon to represent the application in
Windows. The icon should be in .ico format.

Document icon Choose a document icon to represent your application's documents
in Windows. The icon should be in .ico format.

Version
information

The version information to be stored as part of your application and
displayed in the Windows property inspector and dialogs.

Make U3
Compatible

Build your application for the U3 smart platform. For more
information on U3 see http://www.u3.com. For more
documentation on building U3 applications using Revolution, see
the Resources/Examples/U3 Documentation.pdf file included
within your Revolution distribution folder.

320

Figure 82 – Standalone Settings – Unix

Build for Linux Build a standalone for Linux
Build for Solaris Build a standalone for Solaris
Include Select built-in Revolution dialogs to include. These dialogs are

useful if your application may be run on a system that does not
include these dialogs as part of the OS. You do not need to include
these dialogs if you are running a recent version of GTK.

321

Figure 83 – Standalone Settings – Bug Reports

Include Error
Reporting Dialog

Include an error reporting stack in your standalone. You should
select this option if you are testing your application and want
details of any errors in your standalone, or if you have not included
your own error reporting routines in your stacks.

htmlText for
dialog

The text to display to the user in the dialog that comes up when an
error is encountered. This text should be in Revolution-compatible
HTML format. Create and format the text in a Revolution field then
copy the field's HTMLText property.

Dialog icon The icon to display in the error dialog. This should be stored as an
image in your stack.

Allow user to
enter comments

Display a box for the user to give you more information. This
information will be included in the report.

Allow user to save
report to file

Allow the user to save the report to a file. Select this option if you
want users to save an error report and send it to you.

Allow user to
email report

Allow the user to email the report. Select this option if you want the
user to be able to send you or your technical support department
details of the error. This option loads up the system default email
client and populates the email with the contents of the error report
and the user's comments. The To: field is sent to the email address
specified in the email address field.

322

10.2 Distributing Using the Player
Instead of building a standalone, you may choose to distribute your stacks using the
freely available Revolution player. Direct users to download the latest version of the
player from http://downloads.runrev.com/. Note that the Player is the only option
available for distributing your stacks with Revolution Media. The Player always runs as a
full screen application with a backdrop when running stacks created in Revolution Media.

The player has the advantage that once installed you can send only your stacks to the
user. Stacks are smaller than standalone applications. The player has the disadvantage
that you cannot create the same brand experience as you can with a fully fledged
standalone application. It also requires the end user to be willing to install the player
before they can access your stacks. Stacks created in Media will always display a
backdrop.

323

Chapter 11 Error Handling & Debugging
In an ideal world everyone would write perfect code and there would never be any need
to debug. However in reality, virtually every project is going to require some degree of
debugging. The more complex the project the more like this is to be true. Fortunately
Revolution includes a full plethora of debugging tools and techniques that make it quick
and easy to track down errors. The live run-edit cycle allows you to see the effect of
corrections as soon as you make them. And, unlike working in a lower-level language,
when you make a mistake you will receive a human-friendly error message pointing you
to where the error occurred, instead of the application unexpectedly quitting.

As well as the set of built-in error reporting and debugging tools, Revolution also allows
you complete flexibility over error handling, allowing you to provide a customized
experience to the end user of your application.

324

11.1 Common Techniques for Solving Problems
If you encounter a problem with your code, there are a number of methods available to
help you track it down. In this section we detail some of the main techniques you may
find useful.

11.1.1 The Revolution Error Dialog
Often the first thing that will alert you to a problem is an error dialog.

Figure 84 – An Error Dialog

There are two possible types of error dialog. The first is the Execution Error dialog. This
dialog is displayed when your script is running and encounters an error.

In the example above, the script was attempting to access field 100. This field does not
exist. When Revolution encounters a problem like this, execution will halt and the dialog
above will be displayed.

If you know what the error is from looking at it, use the Script button to go directly to the
script and edit it. The line that generated the error will be highlighted in the script
window.

Alternatively, if you need more information the Debug button will load the script in the
debugger at the line the error occurred (see below for more information on using the
Debugger). You can then load the Variable Watcher (see below) to see the state of all the
variables at the point where execution was halted.

325

Note: The Debug button will only appear if Script Debug Mode is checked in the
Development menu.

Errors During Compiling
A Script Error dialog is displayed when your script cannot be compiled because of a
syntax error. This dialog is typically displayed when you attempt to compile a change to a
script by pressing the Apply button in the Script Editor. Pressing the Script button will
select the line that caused the error. Correct the error then press the Apply button to
compile the script again.

Caution: If a compile error is generated then the entire script to which it applies will not
be compiled, not just the line or handler that contains the error. If other scripts are
attempting to call commands or functions in this script they will not be able to run until
you correct the problem and compile the script again.

Because Revolution compiles all the scripts within a stack when it loads them, a Script
Error dialog can also be generated when you load a stack from disk for the first time – if
you saved a stack that contained a script that could not compile.

Important: Do not confuse the Execution Error and Script Error dialogs. The Execution
Error dialog occurs when a script is running and cannot continue due to an error. The
error dialog will start with the words "executing at [time]". The Script Error dialog
appears when you attempt to compile a script that contains a syntax error. The error
dialog will start with the words "compiling at [time]". The Script Error dialog will never
contain a Debug button because the script that generated the error is not running.

Tip: If you turn on the Variable Checking option in the Script Editor, Revolution will
require that you declare all variables and enclose all literal strings in quotes. It will report
a script compile error if you attempt to use an unquoted literal or do not declare a
variable. This can be useful in catching mistakes before you run a script. Note that if you
turn this option on and attempt to compile an existing script that has not been written in
this way, it will typically generate a large number of errors that need to be corrected
before you can compile it.

11.1.2 Suppressing Errors and Messages
If your stack gets into an unstable state where it is generating a large number of errors,
you may want to temporarily turn off sending messages to the stack or displaying error
messages. This can enable you to edit the stack to make the appropriate changes.

326

To suppress messages, press the Messages button on the toolbar or choose Suppress
Messages from the Development menu. Normal system event messages will stop being
sent to the stack (for example clicking a button will no longer trigger a mouseUp handler,
changing card will no longer trigger an openCard handler). You can still send custom
messages directly to objects within the stack.

To suppress errors, press the Errors button on the toolbar or choose Suppress Errors from
the Development menu. This will prevent any errors from triggering an error display
window.

Caution: Be sure to turn messages and errors back on when you have finished editing.
Otherwise your stack will not work, or any error that comes up during stack operation
will cause execution to halt but will not display an error message.

Tip: You can execute a single navigation command in the message box with a
similar effect as Suppress Messages by including the statement lock messages;
before it. for example, to go to the next card lock messages; go next or to exit
Revolution (without displaying triggering any close messages or asking to save changes
lock messages; quit

11.1.3 Outputting information as your script executes
If you want to know about the state of a particular variable or condition during execution,
you can use the Variable Watcher, detailed below. However sometimes you may want to
run a script without opening the debugger, outputting information along the way. You
can use the put command to output information to the Message Box, a field or a text
file, the write command to output to the Console, or the answer command to display
a dialog.

Output to the Message Box
The Message Box is a convenient way to output information while a script is running. It
allows you to display the information you want within the IDE without having to create a
field or stack to display the information. Using a put command without specifying a
destination outputs to the Message Box:

put tVar

In the example above, substitute tVar with the name of the variable in your script that you
want to see the contents of. You can also output information only if a certain condition is
met:

if tVar is true then put tData

327

Whenever you display something in the message box, a special global variable called
message (often abbreviated to msg) is updated. This allows you to check the contents
of the message box easily, as well as add or append information rather than replacing it.

-- puts tInformation and a return after the data
-- already in the message box
put tInformation & return after msg

For more information, see the section on the Message Box, above.

Output to Standard Out (stdOut or the Console on Mac OS X)
The stdOut is a useful place to log messages. Unlike the Message Box, it is easy to log a
sequence of events which you can then scroll back to review later on. It also has the
advantage of being external to Revolution so using it does not interfere with your
application window layering or focus in any way. The stdOut is only available on Linux,
Unix or Mac OS X systems. On Mac OS X, it can be accessed by opening the Console
application, located in the Utilities folder within Applications.

The syntax to write something to stdOut or the Console is:

write tMessage & return to stdout

Tip: If you are writing a lot of data out to the console, it can be useful to append the time
to each one to make it easier to debug. write tMessage && the long time &
return to stdOut. If you need more granualarity than seconds, use the
milliseconds instead of the long time.

Tip: If you are inserting debugging output statements into your code, consider making
them conditional on a global variable. This allows you to turn on debugging by setting
the variable without making changes to code. Even better it prevents forgotten debugging
code in your application inadvertently filling the console with messages on an end user's
system.

if gDebugging then write tMessage & return to stdOut

Output to a field
You can create a stack that contains fields used for debugging:

put tVar & return after field "debugging info" of \
 stack "my debug stack"

328

Tip: You may want to create a set of tools that makes it easy to debug a specific
application you are working on. Create this stack then save it into your plug-ins folder so
it is available from the Development menu in the IDE.

Output to a dialog
To display a dialog with the contents of a statement, use the answer command. This
method is suitable if you want to output something quickly, but is usually unsuitable for
larger debugging tasks as it pauses execution to display a dialog each time

if tVar is true then answer tVar

Output to a text file
If you want to log information more permanently, you can use a text file. You may want
to store the file path in a global variable so you can change it easily. See the section on
using file URLs, below for more information.

put tVar & return after URL "file:debug.txt"

11.1.4 Interrupting Execution
If you need to interrupt a script while it is running, press control-period (or command-
period on Mac OS). Note that interrupting a script will only work if the global
allowInterrupts property is set to true.

Tip: On Mac OS X systems, if your application has got into an unstable state and you are
unable to interrupt it with command-period you may be able to interrupt it and regain
control by sending it a signal. Open the Terminal utility and then use top -o cpu or ps ax
to retrieve the process ID for Revolution. Then run kill -sighup [processID] where
[processID] is the ID of the Revolution process.

11.2 The Debugger
Typically when you want to track down a problem with your script, you will want to use
the debugger. The debugger provides a simple interface that allows you to step through
your script line by line as it executes. You can see the results of each statement as it
happens. If you load the Variable Watcher from within the debugger, it will show you the
contents of all of the variables used in a particular handler. These values will be updated
as you step through. You can even edit these values while your script is running. This can
be useful if you spot a problem in a given area or want to test a section of code with a
different set of data as it runs.

To activate the debugger, first ensure that Script Debug Mode is turned on in the
Development menu. Then open up the script you want to debug and click in the gray bar
to the left of the line where you want to open the debugger. Alternatively you can write

329

the command breakPoint into the script. Using the breakPoint command allows
you to break conditionally – if tVar is true then breakPoint.

Next run your script as normal. When Revolution reaches a breakpoint it will pause
execution and load up the debugger.

Important: To see the contents of variables while your script is running, wait for the
debugger to open then choose Variable Watcher from the Debug menu. For more
information on using the Variable Watcher, see below.

Figure 85 – The Debugger

For a table describing each of the buttons in the debugger together with their keyboard
shortcuts, see the section on The Debug Menu in chapter 3.

Press the Step Into button to execute the current line and move to the next line. Step Over
performs the same action, except that if the current line calls a function it will run that
entire function without opening it in the debugger. Press Trace to slowly step through the
script line by line.

Once you have found the cause of the problem, press the Run button to exit the debugger
and run the script at full speed. Alternatively press the Abort button to halt execution on
the current line and edit the script.

Breakpoints bar

Breakpoint

Debugger controls

330

Tip: To improve the performance when debugging a complex script, set a breakpoint
further down in the script during the debugging process and press the Run button instead
of pressing Step Over. The debugger is temporarily deactivated until the new breakpoint
is reached, which means the script runs at full speed. When using Step Over, the
debugger is still active even though it does not display a routine as it runs, which is
slower.

11.3 The Variable Watcher

Context menu Choose the execution context to display. This will show all the

available contexts that are currently executing. For example, if you
have a button that has called a function and you are currently
paused within that function, the variables displayed will be for that
function. But you can go back and look at the variables in the
handler that called the function by choosing it from this menu.

Conditional
breakpoints

Attach a conditional breakpoint to a variable. In the example above,
if you want a breakpoint to be triggered when tVar contains 2, click
on the breakpoint area to the left of tVar and type tVar = 2 into the
dialog. Press the Run button in the debugger. Execution will halt if
tVar becomes equal to 2.

List of variables This lists all the variables in the current execution context. The
contents of each variable is listed in the area on the right. If the
contents is truncated, click on a variable to have the full contents
displayed in the edit area at the bottom. The display area is updated
each time you step to the next line while debugging.

Edit area Display and the contents of the currently selected variable. To
change the content, simply enter a new value.

Edit script Go to the script editor or debugger window for the current

List of variables

Edit area

Conditional breakpoints

Context menu

Edit script

331

execution context.

11.4 Custom Error handling
If you are creating an application that is going to be distributed, you may want to include
a method for catching and handling errors. Revolution provides two such methods. The
first is the try/catch control structure. This control structure can be inserted around
any routine that you know may encounter problems when in use. For example, you may
wish to include this around a routine that reads in a file from disk to handle the case
where a corrupted file has been selected. The second method is to write a custom
errorDialog routine. Unlike a try/catch control structure, an errorDialog
handler is global to your application (or card or stack within an application) and does not
provide a mechanism to allow a script that encounters an error to continue. Use this
method to display a custom error dialog when an error occurs that you are unable to
predict and report using try/catch.

Using try/catch
Enclose code that may be error prone within a try control structure. The following
example shows a routine that opens and reads from a file enclosed in a try statement. If
an execution error occurs in any of the statements after the start of the try control
structure, the catch clause will be triggered with the details of the error. In the example
below we declare a variable someError to contain details of the error.

try
 open file tFile
 read from file tFile until eof
 close file
catch someError
 answer "An error occurred reading a file" && someError
end try

Tip: The data returned to the error routine is returned in the internal format that
Revolution uses to display execution errors. To look up the human friendly string
associated with a particular error, look at the first item returned against the list of
execution errors stored in the Revolution IDE.

put line (item 1 of someError) of the cErrorsList of \
 card 1 of stack "revErrorDisplay"

This will only work in the IDE.

If you want to include statements that will be run regardless of whether there has been an
error or not, include the statements as part of a finally clause.

332

To create readable error messages for cases where you anticipate there may be an error,
use the throw keyword. For example, if we want to display an error message when the
result for opening a file returns something:

open file tFile
if the result is not empty then throw the result

In the example above, if the file cannot be opened and the result is set, the value of the
result will be passed to the catch statement in the someError variable.

Writing a custom errorDialog routine
When an execution error occurs, an errorDialog message is sent. The IDE uses this
message to display the execution error dialog. However you can write and include your
own custom errorDialog routine. This is useful if you are planning to distribute your
application. For example, you could create a stack that transmits the error information
directly to your technical support department or displays a custom message on screen. A
basic errorDialog routine is shown below:

on errorDialog pError
 answer "There was an error" && pError
end errorDialog

This routine will also be activated if you use the throw keyword to throw an error
(outside of a try/catch control structure).

11.5 The Message Watcher
The Message Watcher lets you see what messages are sent during a particular operation.
it can be useful if you want to create a log of the sequences of messages generated during
a particular operation. It also logs how long each message takes to run. This makes it
useful when you are looking for bottlenecks in your code. The Message Watcher is
located in the Development menu.

Message list area

333

Figure 86 – The Message Watcher Window
Message list area Lists messages as they happen. The format is the name of the

message, the time the message was sent and the number of
milliseconds since the last message. Click to select a message,
double click to open it in the Script Editor.

In the example above we can see that the user was inactive for 4.7
seconds before moving the mouse over an object that triggered a
mouseEnter message. 599 milliseconds later they clicked the mouse
triggering a mouseUp message. The mouseUp handler called
calculateResult 0 milliseconds later, then formatData was called
147 milliseconds later. Because there were no user-generated
messages in the sequence, we know that the calculateResult handler
took 147 milliseconds to run.

Object field Shows the object that the message was sent to. Click on a line in the
Message List to update this field.

Message type Shows the type for the selected message – command, function,
getProp or setProp

Active Check this box to activate the Message Watcher. Deactivate the
Message Watcher when you have captured information about the
sequence of events you are interested in and want to stop the
logging of additional messages.

Clear Clears the message list field.
Suppress Allows you to set what messages you want displayed and which

ones you want to suppress. Use this option to narrow down the
messages that are logged so you can see information about the
sequence you are interested in. See below for more information.

Figure 87 – Suppress Messages Option Screen

334

Action – Handled Don't log any message that causes a handler to run when it is sent.
Action – Not
Handled

Don't log any message that does not cause a handler to run when it
is sent. This is the default option and prevents the log from filling
up with messages that do not cause any scripts to run.

IDE Messages Do not log Revolution IDE messages. The Revolution IDE
generates lots of messages as it is written in Revolution. This is the
default option but you may wish to display these messages if you
are customizing the Revolution IDE.

Handler Type Do not log the selected type of handler. For example, to prevent
displaying all function calls, check the function box.

Message list A list of messages not to log. By default mouseMove is listed as
otherwise mouseMove messages may flood the display whenever
you move the mouse.

Add Add a message name to prevent it from being logged.
Delete Delete a message name to cause it to be logged in the future.

11.6 Tracking Down Problems in Standalone Applications
We recommend that you debug your application as fully as possible in the IDE, so that
you can use the Debugger and other tools. However occasionally you may need to track
down a problem that only occurs in a standalone application. If this happens, use the
techniques described above for writing information out to the stdOut or a text file. You
can also include an error display dialog using the Bug Reports tab within the Standalone
Settings screen. Be sure to check either the Allow user to save report to file or Allow user
to email report buttons so that you can view the error generated. For more information,
see the chapter on Distributing your Application.

335

Chapter 12 Transferring Information with Files, the
Internet and Sockets

Reading and writing data to files or transferring data over the Internet are important
functions in most applications. Revolution provides a rich feature set for performing
these operations.

Accessing data from a file typically takes just a single line of code. Revolution's file path
syntax uses the same format on each platform so you typically don't have to rewrite your
file handling routines to deploy cross platform. A set of functions provides for copying,
deleting or renaming files, as well as accessing appropriate system and user folders.

Revolution includes functions for downloading and uploading data to the Internet. Simple
downloads and uploads can be performed with just a single line of code. Support for the
http, ftp and post protocols is included. Syntax is included that allows downloading in
both the foreground and background. Additional library commands allow you to
construct multipart form data, send ftp commands and more.

The Enterprise edition includes built-in support for https, SSL & encryption.

If the built-in protocol support doesn't do what you need, Revolution also allows you to
implement your own Internet protocols using its straightforward socket support. A very
basic client server application can be written in a few lines of code.

336

12.1 File Name Specifications and File Paths
A file path is a way of describing the location of a file or folder so that it can be found by
a handler. File paths are used throughout Revolution: when you read to and write from
text files, when you reference an external QuickTime file to display in a player, and in
many other situations. If your application refers to external files in any way, an
understanding of file path is essential.

This topic discusses the syntax for creating and reading a file reference, and how to relate
file paths to the location of your application so that they'll be accessible when your
application is installed on another system with a different folder structure.

12.1.1 What is a File Path?
A file path is a description of the exact location of a file or folder. The file path is created
by starting at the top of the computer's file system, naming the disk or volume that the
file is on, then naming every folder that encloses the file, in descending order, until the
file is reached.

Locating a file
For example, suppose you want to describe the location of a file called "My File", which
is located inside a folder called "My Folder". That folder is in turn located inside a folder
called "Top Folder", which is on a drive called "Hard Disk". You need all this
information to completely describe where the file is:

 Hard Disk
 Top Folder
 My Folder
 My File

If someone tells you which disk the file is on, then which folder to open, and so on, you
can find the file by opening each successive icon on your computer's desktop. By starting
with the disk, then opening each enclosing folder in succession until you arrive at the file,
you can find exactly the file that's being described.

The structure of a file path
A file path specifies each level of the hierarchy that encloses the file. Revolution presents
the information in a file path that might look like this:
 /Hard Disk/Top Folder/My Folder/My File

You can see that to write a file path, you start by naming the disk the file is on, then add
each enclosing folder in order until you arrive at the file.

337

Tip: To see the path to a file, enter the following in the message box:

answer file "Choose a file:"; put it

This displays the file path for the file you choose.

Important: Each platform has its own way for programmers to specify file paths. The
file path shown above is in the usual style for file paths on Unix systems. For cross-
platform compatibility, Revolution uses this same forward slash / character in its file path
regardless of the current platform. This way, you can generally specify file and work
with paths in your scripts without having to convert them when you switch platforms.

File paths on Windows systems
On Windows systems, disks are named with a drive letter followed by a colon character
(:). A typical Revolution file path on a Windows system looks like this:

C:/folder/file.txt

File paths on OS X systems
On OS X systems, the startup disk, rather than the desktop, is used as the top level of the
folder structure. This means that the startup disk's name does not appear in file paths.
Instead, the first part of the file path is the top-level folder that the file is in.

If the disk "Hard Disk" is the startup disk, a typical path on OS X systems might look like
this:

 /Top Folder/My Folder/My File

Notice that the disk name isn't part of this path.

Note: If you need to find out the startup disk's name, check the first disk name returned
by the volumes function.

For files on a disk that isn't the startup disk, the file path starts with "/Volumes" instead of
"/". A typical file path to a file that's on a non-startup disk on an OS X system looks like
this:
 /Volumes/Swap Disk/Folder/file.txt

Folder paths

338

You construct the path of a folder the same way as the path to a file. A folder path always
ends with a slash character (/). This final slash indicates that the path is to a folder rather
than a file.

For example, this pathname describes a folder called "Project" inside a folder called
"Forbin" on a disk named "Doomsday":
 /Doomsday/Forbin/Project/

If "Project" is a file, its pathname looks like this, without the final slash:
 /Doomsday/Forbin/Project

File paths for OS X bundles
A bundle is a special type of folder, used on OS X, that is presented to the user as a single
file but that is maintained internally by the operating system as a folder. Many OS X
applications – including Revolution and the applications it creates – are stored and
distributed as bundles that contain several files. When the user double-clicks the bundle
the application starts up instead of a folder window opening to show the bundle's
contents.

You can take advantage of the bundle concept to include any needed support files with
your application. If you place the files in the application's bundle, users ordinarily never
see them, and the entire application--support files and all--behaves as a single icon.

Tip: To see the contents of a bundle, right-click (or control click) the bundle and choose
"Show Package Contents" from the contextual menu.

Most of the time, the distinction between bundles and files doesn't matter. However we
recommend that you treat them as files when working from the perspective of a user but
otherwise refer to them as folders when coding. This will help to keep your code
readable. Thus if you are selecting a bundle in a file dialog use the answer file form.
When moving or renaming a bundle, refer to them as a folder.

Moving, renaming, or deleting a bundle
When using the rename command, to rename a bundle, use the rename folder
form of the command:

 rename folder "/Volumes/Disk/Applications/MyApp/" \
 to "/Volumes/Disk/Applications/OtherApp/"

Similarly, when dealing with a bundle, use the delete folder command instead of
delete file, and the revCopyFolder command instead of revCopyFile.

Referring to files inside a bundle

339

When referring to a file that's inside a bundle, you can treat the bundle just as if it were a
folder. For example, if you have placed a file called "My Support.txt" inside your
application's bundle, the absolute path to the file might look like this:
 /Volumes/Disk/Applications/MyApp/My Support.txt

The / character in a file or folder name
The slash (/) is not a legal character in Unix or Windows file or folder names, but it is
legal for Mac OS file or folder names to contain a slash. Since a slash in a file or folder
name would cause ambiguity – is the slash part of a name, or does it separate one level of
the hierarchy from the next? – Revolution substitutes a colon (:) for any slashes in folder
or file names on Mac OS systems.

For example, if a file on a Mac OS system is named "Notes from 12/21/93", you refer to
it in a script as "Notes from 12:21:93". Since the colon is not a legal character in Mac OS
folder or file names, this removes the ambiguity.

12.1.2 Absolute and Relative File Paths
When describing how to get to a file, you have two options. You can start from the top
level, the name of the disk, and name each of the enclosing folders until you get to the
file. This is called an absolute path, because it's independent of where you start from. Or
you can start from the current folder and describe how to get to the file from there. This is
called a relative path, because it depends on where you start.

All the file paths shown so far in this topic are absolute paths.

Absolute file paths
Absolute file paths do not depend on which folder your stack file is in or on where the
current folder is. An absolute path to a particular folder or file is always written the same
way.

For example, suppose your application is in a folder called "Application Folder", and you
want to specify a file called "Westwind" which is in a folder called "Stories" inside
"Application Folder".

 Hard Disk
 Top Folder
 My Folder
 My File
 Application Folder
 My Application
 Stories
 Westwind

The absolute file path of your application looks like this:
 /Hard Disk/Application Folder/My Application

340

and the absolute path of the "Westwind" file looks like this:
 /Hard Disk/Application Folder/Stories/Westwind

Note: On Mac OS, OS X, and Unix systems, absolute file paths always start with a slash
character. On Windows systems, absolute file paths always start with a drive letter
followed by a colon (:).

Relative file paths
Now suppose you want to tell someone how to get to the "Westwind" file, starting from
the folder containing the application.

Since the application is in "Application Folder", we don't need to include the steps to get
to "Application Folder". Instead, we can describe the location of the "Westwind" file with
this relative pathname:
 Stories/Westwind

This relative pathname starts at "Application Folder"--the folder that holds the
application--and describes how to get to the "Westwind" file from there: you open the
folder "Stories", then find "Westwind" inside it.

A relative file path starts at a particular folder, rather than at the top of the file system like
an absolute file path. The relative file path builds a file path from the starting folder to the
file or folder whose location is being specified.

Finding the current folder
By default, the current folder is set to the folder containing the application (either the
Revolution development environment or your application, depending on whether your
application is a standalone). So in the example above, the current folder is "Application
Folder", because that's where the running application is located.

Note: To change the current folder, set the defaultFolder property.

Going up to the parent folder
The relative path ".." indicates the current folder's parent folder. If the current folder is
"Stories", the relative path
 ..
means the same thing as the absolute path
 /Hard Disk/Application Folder/

Going up multiple levels
To go up more than one level, use more than one "../". To go up two levels, use "../../"; to
go up three levels, use "../../../", and so forth.

341

For example, suppose the current folder is "Stories", and its absolute path looks like this:
 /Hard Disk/Application Folder/Stories/

To get to "My Application" in "Application Folder", you go up one level to "Application
Folder", then down one level to "My Application". The relative path looks like this:
 ../My Application

To get to "Top Folder" on "Hard Disk", you go up two levels--to "Application Folder",
then to "Hard Disk"--and then down one level to "Top Folder". The relative path looks
like this:
 ../../Top Folder/

Starting at the home directory
On OS X and Unix systems, the "~" character designates a user's home directory.

A path that starts with "~/" is a relative path starting with the current user's home
directory. A path that starts with "~", followed by the user ID of a user on that system, is
a relative path starting with that user's home directory.

12.1.3 When to use relative and absolute file paths
Absolute file paths and relative file paths are interchangeable. Which one to use depends
on a couple of factors.

Absolute file paths are easy to understand and they don't change depending on the current
folder. This can be an advantage if you are changing the defaultFolder regularly.

However absolute file paths always include the full name of the hard disk and folders
leading up to the current working folder. Therefore, if you plan to distribute your
application you will want to work with relative paths, so that media shipped in subfolders
with your application is still easy to locate.

Tip: By default, when linking to an image or resource using the Inspector, Revolution
inserts an absolute file path. If you plan to distribute your application, locate your media
in a subfolder next to the stack you are working on and convert these file paths to relative
file paths by deleting the directories up to the one you are working in. This will mean you
don't need to make any changes when it comes time to distribute your application.

It's OK to use absolute paths to specify files or folders that the user selects after
installation. For example, if you ask the user to select a file (using the answer file
command) and read data from the file, there's no need to convert the absolute path that
the answer file command provides to a relative path. Because you're using the path
right after you get it from the answer command, you know that the disk name and
folder structure aren't going to change between getting the path and using it.

342

12.2 Special Folders
Modern operating systems each have a set of special-purpose folders designated for a
variety of purposes. If you are writing an application it is recommended that you make
use of these folders where appropriate so that you provide the best possible user
experience. For example, the contents of the desktop reside in a special folder; there is a
folder set aside for fonts; there is a folder for application preferences; and so on.

These special folders don't always have the same name and location, so you can't rely on
a stored file path to locate them. For example, if your application is installed onto an OS
localized into a different language, the names of the file path will be different, on some
Windows special folders are named or placed differently depending on what version of
Windows is running, etc.

To find out the name and location of a special folder, regardless of any of these factors,
you use the specialFolderPath function. The function supports a number of forms
for each operating system, describing the special folders for each one. Some of the forms
are the same cross-platform. The following example will get the location of the Desktop
folder on Windows, Mac OS X or Linux:

put specialFolderPath("Desktop") into myPath

To get the path to the Start menu's folder on a Windows system:

put specialFolderPath("Start") into myPath

For a complete list of possible folders see the, specialFolderPath in the Revolution
Dictionary.

12.3 File Types, Application Signatures & File Ownership
When you double-click a document file, it automatically opens in the application it's
associated with. Each operating system has a different method for associating files with
an application. In order to create files that belong to your standalone application, you
need to set up the association appropriately for each platform you distribute on.

This topic describes how to correctly associate your application with the files it creates.

12.3.1 Windows File Extensions and Ownership
When a file is saved on a Windows system, a three-character extension is usually added
to the file's name. The extension specifies the format of the file.

To determine which application to launch when the user double-clicks a file, Windows
checks the Windows registry to find out what application has registered itself as owning
the file's extension. Each application can add keys to the registry to identify certain file
extensions as belonging to it.

343

Applications that don't own files
If your application does not create files that you want the application to own, you don't
need to make any modifications to the registry or specify any extensions.

Applications that own their own files
If your application creates files with its own custom extension, when you install the
application, you should make changes to the Windows registry to identify the extension
as belonging to your application.

Popular Windows installer programs will make these registry changes automatically for
you. You can also perform these registry changes using the setRegistry function.

Installing custom icons
Each Windows file can display its own icon. You can have separate icons for your
application and for files it owns. Icon files must be stored in .ico format.

Custom application icons
If you want to include a custom icon for your application, use the "Application Icon"
option on the Windows screen of the Standalone Application Settings window to specify
the icon file. When you build the application, the icon will be included in the application.
For more information, see the chapter on Deploying Your Application.

Custom file icons
To include a custom icon for your documents, use the "Document Icon" option on the
Windows screen of the Standalone Application Settings window to specify the icon file.
When you build the application, the icon will be included in the application.

Important: For the correct icon to appear on files your application creates, the file's
extension must be registered in the Windows registry.

File extensions
You can add an extension to the name of any Windows file. The extension may contain
letters A-Z, digits 0-9, ' (single quote), !, @, #, $, %, ^, &, (,), -, _, {, }, `, or ~.

The Windows registry associates applications with the extension for the files they own.

12.3.2 OS X File Types and Creators
On OS X each file has a file extension which determines which application owns it.
However OS X systems can also use the unique four-character creator signature and a
four-character file type used on Mac OS Classic (see below for more information).

OS X applications store file association information in a property list file, or plist. Each
application's plist is stored as part of its application bundle.

344

Applications that don't own files
To assign your unique creator signature when building an application, enter the signature
on the OS X screen of the Standalone Application Settings window. Revolution
automatically includes the creator signature in the application's plist.

Applications that own their own files
If your application creates files with your application's creator signature, you should
include in your application's plist an entry for each file type you use. Once you have built
your standalone application, follow these steps to open the plist file:

1. Right click on your application bundle, navigate to the contents folder and open the
"Info.plist" file. If you have installed Apple's developer tools, you have an application
called "Property List Editor", which you can use to make changes to the plist file.
Otherwise, you can edit the file in a text editor.
2. Locate the information for the document type. In Property List Editor, expand the
"Root" node, then expand the "CFBundleDocumentTypes" node, then expand the "0"
node. In a text editor, locate "CFBundleDocumentTypes". Below it, note the tags
"<array>" and "<dict>". The information for the first document type is between "<dict>"
and "</dict>".
3. Enter the file description, which is a short phrase describing what kind of file this is. In
Property List Editor, change the value of "CFBundleTypeName" to the description you
want to use. In a text editor, locate "CFBundleTypeName" in the document information.
Below it is the file description, enclosed between "<string>" and "</string>":
 <string>Revolution Stack</string>
Change the description to the one you want to use.

Important: Do not change the tags (enclosed in "<" and ">"). Only change what's
between them.

4. Enter the file extension. In Property List Editor, expand "CFBundleTypeExtensions"
and enter the file extension in the "0" node. In a text editor, locate
"CFBundleTypeExtensions" in the document information. Below it is the extension,
enclosed in "<array>" and "<string>" tags. Change the extension to the one you want to
use.
5. Enter the four-character file type. In Property List Editor, expand
"CFBundleTypeOSTypes" and enter the file type in the "0" node. In a text editor, locate
"CFBundleTypeOSTypes" in the document information. Below it is the file type,
enclosed in "<array>" and "<string>" tags. Change the file type to the one you want to
use.

If the format for this type of file is standard (such as plain text), use a standard type (such
as "TEXT"). If the format belongs to your application, use a custom file type of your
choice.

345

Important: Apple reserves all file types with no uppercase letters. If you use a custom
file type for your application, make sure it contains at least one uppercase letter.

If you want to assign more file types to your application, copy the portion of the plist file
inside the "CFBundleTypes" array between "<dict>" and "</dict>", including these tags.
The "CFBundleTypes" node should now contain two "<dict>" nodes and all their
contents. Repeat the steps above for each different file type your application can create.

Creating Files
When your application creates files, set the fileType property to the desired creator
signature and file type for the new file. (For stack files created with the save command,
use the stackFileType property instead.) When creating files, the application uses
the current value of the fileType or stackFileType property to determine what
creator and file type the new file should have.

It's important to understand that a file's creator signature determines which application is
launched automatically when you double-click the file, but doesn't prevent other
applications from being able to open that file. For example, if your application creates
files of type "TEXT", any text editor can open the files. If your application creates stack
files, and uses the file type "RSTK", then Revolution will be able to open the stack files,
as well as your application.

File extensions
You can add an extension to the name of any OS X file. When the user double-clicks a
file with no creator signature, the operating system uses the extension to determine which
application to use to open the file.

An application bundle's name should end with the extension ".app".

Note: Apple's recommendations for determining file type and creator on OS X systems
are currently in flux. The recommended method for the present is to set a file type and
creator signature, and also attach an extension to the end of each file's name when it is
created. Valid extensions on OS X systems are up to twelve characters in length, and
may include the letters a-z, the digits 0-9, $, %, _, or ~. For up-to-date information on
Apple's recommendations for OS X, see Apple's developer documentation at
<http://www.apple.com/developer/>.

12.3.3 Mac OS Classic File Types and Creators
When a file is saved on a Mac OS system, a four-character creator signature is saved with
it. The creator signature specifies which application owns the file. Every Mac OS and OS
X application should have a unique creator signature. (Apple maintains a registry of
creator signatures on its web site at <http://developer.apple.com/dev/cftype/>.)

346

Mac OS files have a separate file type, also four characters long, which specifies the
format of the file. The file type is also used to determine which applications (other than
the owner) can work with the file. The file type of all applications is "APPL".

Applications that don't own files
To assign your unique creator signature when building an application, enter the signature
on the Mac OS screen of the Standalone Application Settings window. Revolution
automatically includes the resources needed for Mac OS to recognize the creator
signature.

Applications that own their own files
If your application creates files with your application's creator signature, you should
include in your application a set of resources for each file type you use. Once you have
saved your standalone application, open the application file in ResEdit and follow these
steps:

1. Open the BNDL resource window, then open the BNDL 128 resource. The BNDL 128
resource contains a single entry ("APPL").

2. Choose "Create New File Type" from the Resources menu. A new entry appears below
the "APPL" entry.

3. In the Type field, enter the four-character file type. If the format for this type of file is
standard (such as plain text), use a standard type (such as "TEXT"). If the format belongs
to your application, use a custom file type of your choice.

Repeat steps 2-3 for each different file type your application can create.

When your application creates files, set the fileType property to the desired creator
signature and file type for the new file. For stack files created with the save command,
use the stackFileType property instead. When creating files, the application uses the
current value of the fileType or stackFileType property to determine what
creator and file type the new file should have.

Installing custom icons
Each Mac OS file may display any of six different icons, depending on context and on
the number of colors the screen can display: large (32x32 pixel) icons and small (16x16
pixel) icons, each in black-and-white, 16 colors, and 256 colors.

Mac OS provides default icons that are used for applications and documents that don't
have their own. If you want your application or the documents it owns to display a
custom icon, you must create the icons and then attach them to the application.

Custom application icons

347

If you want to include a custom icon for your application, use ResEdit or a similar tool to
create a set of icon resources. There are six standard icon resource types: ICN# (black-
and-white), icl4 (four-bit color), icl8 (8-bit color), ics# (black-and-white small), ics4 (4-
bit small), and ics8 (8-bit small). Each of these application icons should have the resource
ID 128.

Save the icons in a single file, and use the "Include resources from file" option on the
Mac OS screen of the Standalone Application Settings window to specify the file. When
you build the application, the icons will be included in the application's file.

12.3.4 Unix File Extensions
Unix systems do not have an overall required method for specifying a file's type, but
most files on a Unix system are created with extensions in the file name, similar to the
extensions used on Windows systems. These extensions may be of any length and may
include any characters (other than /).

12.4 Working with URLs
A URL is a container for a file (or other resource), which may either be on the same
system the application is running on, or on another system that's accessible via the
Internet.

This topic discusses the various URL schemes that Revolution implements, how to create
and manipulate files using URLs, and how to transfer data between your system and an
FTP or HTTP server.

To fully understand this topic, you should know how to create objects and write short
scripts, and understand how to use variables to hold data. You should also have a basic
understanding of how the Internet works.

12.4.1 An Overview of URLs
In the Revolution language, a URL is a container for a file or other document, such as the
output of a CGI on a web server. The data in a URL may be on the same system the
application is running on, or may be on another system.

URLs in Revolution are written like the URLs you see in a browser. You use the URL
keyword to designate a URL, enclosing the URL's name in double quotes:

put field "Info" into URL "file:myfile.txt"
get URL "http://www.example.org/stuff/nonsense.html"
put URL "ftp://ftp.example.net/myfile" into field "Data"

12.4.2 URL Schemes
A URL scheme is a type of URL. Revolution supports five URL schemes with the URL
keyword: http, ftp, file, binfile, and (for backwards compatibility on Mac OS
Classic and OS X) resfile.

348

The http and ftp schemes designate documents or directories that are located on
another system that's accessible via the Internet. The file, binfile, and resfile
schemes designate local files.

12.4.3 The http scheme
An http URL designates a document from a web server:

put URL "http://www.example.org/home.htm" into field "Page"

When you use an http URL in an expression, Revolution downloads the URL from the
server and substitutes the downloaded data for the URL.

When you put something into an http URL, Revolution uploads the data to the web
server:

put field "Info" into URL "http://www.example.net/info.htm"

Note: Because most web servers do not allow HTTP uploads, putting something into an
http URL usually will not be successful. Check with the server's administrator to find
out whether you can use the HTTP protocol to upload files.

For more details about http URLs, see the entry for the http keyword in the
Revolution Dictionary.

12.4.4 The ftp scheme
An ftp URL designates a file or directory on an FTP server:

get URL "ftp://user:passwd@ftp.example.net/picture.jpg"

When you use an ftp URL in an expression, Revolution downloads the URL from the
server and substitutes the downloaded data for the URL.

When you put something into an ftp URL, Revolution uploads the data to the FTP
server:

put image 10 into \
 URL "ftp://user:passwd@ftp.example.net/picture.jpg""

FTP servers require a user name and password, which you can specify in the URL. If you
don't specify a user name and password, Revolution adds the "anonymous" user name
and a dummy password automatically, in accordance with the convention for public FTP
servers.

349

Note: Uploading to an FTP server usually requires a registered user name and password.

For more details about ftp URLs, see the entry for the ftp keyword in the Revolution
Dictionary.

Directories on an FTP server
A URL that ends with a slash (/) designates a directory (rather than a file). An ftp URL
to a directory evaluates to a listing of the directory's contents.

12.4.5 The file scheme
A file URL designates a file on your system:

put field "Stuff" into URL "file:/Disk/Folder/testfile"

When you use a file URL in an expression, Revolution gets the contents of the file you
designate and substitutes it for the URL. The following example puts the contents of a
file into a variable:

put URL "file:myfile.txt" into myVariable

When you put data into a file URL, Revolution puts the data into the file:

put myVariable into URL "file:/Volumes/Backup/data"

Note: As with local variables, if the file doesn't exist, putting data into it creates the file.

To create a URL from a file path that Revolution provides, use the & operator:

answer file "Please choose a file to get:"
get URL ("file:" & it)

File path syntax and the file scheme:
The file URL scheme uses the same file path syntax used elsewhere in Revolution
statements. You can use both absolute paths and relative paths in a file URL.

Conversion of end-of-line markers
Different operating systems use different characters to mark the end of a line. Mac OS X
uses a return character (ASCII 13), Unix systems use a linefeed character (ASCII 10),
and Windows systems use a return followed by a linefeed. To avoid problems when
transporting a stack between platforms, Revolution always uses linefeeds internally when
you use a file URL as a container. Revolution translates as needed between the your
system's end-of-line marker and Revolution's linefeed character. To avoid this translation,
use the binfile scheme (see below).

350

12.4.6 The binfile scheme
A binfile URL designates a file on your system that contains binary data:

put URL "binfile:beachball.gif" into image "Beachball"

When you use a binfile URL in an expression, Revolution gets the contents of the file
you designate and substitutes it for the URL. The following example puts the contents of
a file into a variable:

put URL "binfile:picture.png" into pictVar

When you put data into a binfile URL, Revolution puts the data into the file:

put pictVar into URL "binfile:/Volumes/Backup/pict.png"
put image 1 into "binfile:/image.png"

As with local variables, if the file doesn't exist, putting data into it creates the file.

Note: The binfile scheme works like the file scheme, except that Revolution does
not attempt to convert end-of-line markers. This is because return and linefeed characters
can be present in a binary file but not be intended to mark the end of the line. Changing
these characters can corrupt a binary file, so the binfile scheme leaves them alone.

12.4.7 The resfile scheme
On Mac OS Classic (and sometimes on OS X systems), files can consist of either a data
fork or a resource fork or both.

Important: While Revolution supports reading and writing resource fork files on Mac
OS X and Mac OS Classic, this feature is only intended to help you access and work with
legacy files. We do not generally recommend the use of resource forks when designing
any new application.

The resource fork contains defined resources such as icons, menu definitions, dialog
boxes, fonts, and so forth. A resfile URL designates the resource fork of a Mac OS or
OS X file:

put myBinaryData into URL "resfile:/Disk/Resources"

When you use a resfile URL in an expression, Revolution gets the resource fork of
the file you designate and substitutes it for the URL.

351

When you put data into a resfile URL, Revolution puts the data into the file's
resource fork.

Note: A resfile URL specifies the entire resource fork, not just one resource. To
work with individual resources, use the getResource, setResource,
deleteResource and copyResource functions.

The most common use for this URL scheme is to copy an entire resource fork from one
file to another. To modify the data from a resfile URL, you need to understand the
details of Apple's resource fork format.

Creating a resource fork
Unlike the file and binfile URL schemes, the resfile keyword cannot be used
to create a file. If the file doesn't yet exist, you cannot use the resfile keyword to create it.
To create a new resource file, first use a file URL to create the file with an empty
data fork, then write the needed data to its resource fork:

put empty into URL "file:myFile" -- creates an empty file
put myStoredResources into URL "resfile:myFile"

12.4.8 Manipulating URL contents
You use a URL like any other container. You can get the content of a URL or use its
content in any expression. You can also put any data into a URL.

 http, ftp, binfile, and resfile URLs can hold binary data.
 http, ftp, and file URLs can hold text.

The URL keyword
To specify a URL container, you use the URL keyword before the URL, which can use
any of the five schemes described above:

if URL "http://www.example.net/index.html" is not empty...
get URL "binfile:/Applications/Hover.app/data"
put 1+1 into URL "file:output.txt"

The URL keyword tells Revolution that you are using the URL as a container.

Note: Some properties (such as the filename of a player or image) let you specify a
URL as the property's value. Be careful not to include the URL keyword when specifying
such properties, because using the URL keyword indicates that you're treating the URL as
a container. If you use the URL keyword when specifying such a property, the property is
set to the contents of the URL, not the URL itself, and this is usually not what's wanted.

352

Using the content of a URL
As with other containers, you use the content of a URL by using a reference to the URL
in an expression. Revolution substitutes the URL's content for the reference.

If the URL scheme refers to a local file (file, binfile, or resfile URLs),
Revolution reads the content of the file and substitutes it for the URL reference in the
expression:

answer URL "file:../My File" -- displays the file's content
put URL "binfile:flowers.jpg" into myVariable
put URL "resfile:Icons" into URL "resfile:New Icons"

If the URL scheme refers to a document on another system (http or ftp URLs),
Revolution downloads the URL automatically, substituting the downloaded data for the
URL reference:

answer URL "http://www.example.net/files/greeting.txt"

Note: If the server sends back an error message--for example, if the file you specify in
an http URL doesn't exist--then the error message replaces the URL reference in the
expression.

Important: When you use an ftp or http URL in an expression, the handler pauses
until Revolution is finished downloading the URL. If you do not want to block
Revolution when accessing these resources, use the load URL form of the command
(see below).

Putting data into a URL
As with other containers, you can put data into a URL. The result of doing so depends on
whether the URL scheme specifies a file on your system (file, binfile, or
resfile) or on another system (http or ftp).

If the URL scheme refers to a local file (file, binfile, or resfile URLs),
Revolution puts the data into the specified file:

put field "My Text" into URL "file:storedtext.txt"
put image 1 into URL "binfile:picture.png"

If the URL scheme refers to a document on the Internet (http or ftp URLs),
Revolution uploads the data to the URL:

put myVar into URL "ftp://me:pass@ftp.example.net/file.dat"

353

Note: Because most web servers do not allow HTTP uploads, this usually will not be
successful with the http scheme.

Chunk expressions and URLs
Like other containers, URLs can be used with chunk expressions to specify a portion of
what's in a URL--a line, an item, a word, or a character. In this way, any chunk of a URL
is like a container itself. For more information about Chunk Expressions, see the chapter
on Processing Text and Data.

You can use any chunk of a URL in an expression, in the same way you use a whole
URL:

get line 2 of URL "http://www.example.net/index.html"
put word 8 of URL "file:/Disk/Folder/myfile" into field 4
if char 1 of URL "ftp://ftp.example.org/test.jpg" is "0"...

You can also specify ranges, and even one chunk inside another:

put char 1 to 30 of URL "binfile:/marks.dat" into myVar
answer line 1 to 3 of URL "http://www.example.com/file"

Putting data into a chunk
If the URL is local (that is, if it is a file, binfile, or resfile URL), you can put a
value into a chunk of the URL:

put it into char 7 of URL "binfile:/picture.gif"
put return after word 25 of URL "file:../datafile"
put field 3 into line 20 of URL "file:myfile.txt"

You can also put a value into a chunk of an ftp or http URL. Because it's impossible
to upload part of a file, Revolution downloads the file, makes the change, then uploads
the file back to the server.

Tip: This method is inefficient if you need to make several changes. In this case, it's
faster to first put the URL in a variable, replace the chunk you want to change, then put
the variable into the URL:

put URL "ftp://me:secret@ftp.example.net/file.txt" into \
 myVar
put field "New Info" after line 7 of myVar
put field "More" into word 22 of line 3 of myVar
put myVar into URL \

354

 "ftp://me:secret@ftp.example.net/file.txt"

This ensures that the file only needs to be downloaded once and re-uploaded once, no
matter how many changes you need to make.

12.4.9 URLs and memory
URLs, unlike other containers, are only read into memory when you use the URL in a
statement. Other containers – like variables, fields, buttons, and images – are normally
kept in memory, so accessing them doesn't increase memory usage.

This means that in order to read a URL or place a value in a chunk of a URL, Revolution
reads the entire file into memory. Because of this, you should be cautious when using a
URL to refer to any very large file.

Even when referring to a single chunk in a URL, Revolution must place the entire URL
in memory. An expression such as line 347882 of URL
"file:bigfile.txt" may be evaluated very slowly or even not work at all, if
insufficient memory is available. If you refer to a chunk of an ftp or http URL,
Revolution must download the entire file to find the chunk you specify.

Tip: If you need to read and write large quantities of data to a file, or seek
through the contents of a large file without loading the entire contents into memory, use
the open file, read from file, seek and close file commands instead of
the URL commands. For more information on these commands see the Revolution
Dictionary.

12.4.10 Deleting URLs
You remove a URL with the delete URL command.

To delete a local file, you use a file or binfile URL:

delete URL "file:C:/My Programs/test.exe"
delete URL "binfile:../mytext.txt"

It doesn't matter whether the file contains binary data or text; for deletion, these URL
schemes are equivalent.

Tip: You can also use the delete file command to remove a file.

To delete the resource fork of a file, you use a resfile URL. The following example
removes the resource fork along with all resources, but leaves the file in place:

355

delete URL "resfile:/Volumes/Backup/proj.rev"

Tip: To delete a single resource instead of the entire resource fork, use the
deleteResource function.

To remove a file or directory from an FTP server, you use an ftp URL:

delete URL "ftp://root:secret@ftp.example.org/deleteme.txt"
delete URL "ftp://me:mine@ftp.example.net/trash/"

As with creating files, you can use an http URL to delete a file, but most HTTP servers
are not configured to allow this.

12.5 Uploading and Downloading Files
The simplest way to transfer data to an FTP or HTTP server is to use the put command
to upload, or use the URL in an expression to download.

The Internet library includes additional commands to upload and download files to and
from an FTP server. These commands offer more versatile options for monitoring and
controlling the progress of the file transfer.

Uploading using the put command
As mentioned above, putting something into an ftp or http URL uploads the data to
the server:

put myVariable \
 into URL "ftp://user:pass@ftp.example.org/newfile.txt"

If you use the put command with a file or binfile URL as the source, the file is
uploaded:

put URL "file:newfile.txt" \
 into URL "ftp://user:pass@ftp.example.org/newfile.txt"

When you upload data in this way, the operation is blocking: that is, the handler pauses
until the upload is finished. (See below for details on how to create a file transfer that is
not blocking.) If there is an error, the error is placed in the result function:

put field "Data" into URL myFTPDestination
if the result is not empty then beep 2

Important: Uploading or downloading a URL does not prevent other messages from
being sent during the file transfer: the current handler is blocked, but other handlers are

356

not. For example, the user might click a button that uploads or downloads another URL
while the first URL is still being uploaded. In this case, the second file transfer is not
performed and the result is set to "Error Previous request has not completed." To
avoid this problem, you can set a flag while a URL is being uploaded, and check that flag
when trying to upload or download URLs to make sure that there is not already a file
transfer in progress.

Downloading using a URL
Referring to an ftp or http URL in an expression downloads the document.

put URL "ftp://ftp.example.net/myfile.jpg" into image 1
get URL "http://www.example.com/newstuff/newfile.html"

If you use the put command with a file or binfile URL as the destination, the
document is downloaded to the file:

put URL "ftp://ftp.example.net/myfile.jpg" \
 into URL "binfile:/Disk/Folder/myfile.jpg"

12.5.1 Non-blocking transfers
When you transfer a file using URL containers, the file transfer stops the current handler
until the transfer is done. This kind of operation is called a blocking operation, since it
blocks the current handler as long as it's going on.

If you want to transfer data using http without blocking, use the load command. if you
want to transfer large files using ftp, use the libURLftpUpload,
libURLftpUploadFile, or libURLDownloadToFile commands.

Non-blocking file transfers have several advantages:

Since contacting a server may take some time due to network lag, the pause involved in a
blocking operation may be long enough to be noticeable to the user.

If a blocking operation involving a URL is going on, no other blocking operation can
start until the previous one is finished. If a non-blocking file transfer is going on,
however, you can start other non-blocking file transfers. This means that if you use the
library commands, the user can begin multiple file transfers without errors.

During a non-blocking file transfer, you can check and display the status of the transfer.
This lets you display the transfer's progress and allow the user to cancel the file transfer.

Using the load command
The load command downloads the specified document in the background and places it
in a cache. Once a document has been cached, it can be accessed nearly instantaneously

357

when you use its URL, because Revolution uses the cached copy in memory instead of
downloading the URL again.

To use a file that has been downloaded by the load command, refer to it using the URL
keyword as usual. When you request the original URL, Revolution uses the cached file
automatically.

For best performance, use the load command at a time when response speed isn't critical
(such as when your application is starting up), and only use it for documents that must be
displayed quickly, such as images from the web that will be shown when you go to the
next card.

Checking status when using the load command
While a file is being transferred using the load commands, you can check the status of the
transfer using the URLStatus function. This function returns the current status of a
URL that's being downloaded or uploaded:

put the URLStatus of "ftp://ftp.example.com/myfile.txt" \
 into field "Current Status"

The URLStatus function returns one of the following values:

queued - on hold until a previous request to the same site is completed
contacted - the site has been contacted but no data has been sent or received yet
requested - the URL has been requested
loading bytesTotal, bytesReceived - the URL data is being received
uploading bytesTotal, bytesReceived - the file is being uploaded to the URL
cached - the URL is in the cache and the download is complete
uploaded - the application has finished uploading the file to the URL
error - an error occurred and the URL was not transferred
timeout - the application timed out when attempting to transfer the URL

To monitor the progress of a file transfer or display a progress bar, you check the
URLStatus function repeatedly during the transfer. The easiest way to do this is with
timer based messaging – see the section of the same name in the chapter Writing
Revolution Code, for more information.

Canceling a file transfer & emptying the cache
To cancel a transfer initiated with the load command and empty the cache, use the
unload command.

unload URL "http://example.org/new_beta"

Uploading and downloading large files using FTP
The Internet library provides a number of commands for transferring larger files via FTP
without blocking.

358

libURLftpUpload uploads data to an FTP server
libURLftpUploadFile uploads a file to an FTP server
libURLDownloadToFile downloads a file from an FTP server to a local file

The basic effect of these commands is the same as the effect of using URLs: that is, the
data is transferred to or from the server. However, there are several differences in how
the actual file transfer is handled. Because of these differences, the library commands are
more suitable for uploads and downloads, particularly if the file being transferred is large.

The following sets of statements each show one of the Internet library commands, with
the equivalent use of a URL:

libURLftpUpload myVar,"ftp://me:pass@example.net/file.txt"
put myVar into URL "ftp://me:pass@example.net/file.txt"

libURLftpUploadFile \
 "test.data","ftp://ftp.example.org/test"
put URL "binfile:test.data" \
 into URL "ftp://ftp.example.org/test"

libURLDownloadToFile \
 "ftp://example.org/new_beta","/HD/File"
put URL "ftp://example.org/new_beta" \
 into URL "binfile:/HD/File"

Using callback messages
When you start a file transfer using the libURLftpUpload,
libURLftpUploadFile, or libURLDownloadToFile command, you can
optionally specify a callback message, which is usually a custom message that you write
a handler for. This message is sent whenever the file transfer's URLStatus changes, so
you can handle the callback message to handle errors or to display the file transfer's status
to the user.

The following simple example demonstrates how to display a status message to the user.
The following handlers might be found in a button's script:

on mouseUp
 libURLDownloadToFile "ftp://example.org/new_beta",\
 "/HD/Latest Beta","showStatus"
end mouseUp

on showStatus theURL
 put the URLStatus of theURL into field "Status"
end showStatus

359

When you click the button, the mouseUp handler is executed. The
libURLDownloadToFile command begins the file transfer, and its last parameter
specifies that a showStatus message will be sent to the button whenever the URLStatus
changes.

As the URLStatus changes periodically throughout the download process, the button's
showStatus handler is executed repeatedly. Each time a showStatus message is sent, the
handler places the new status in a field. The user can check this field at any time during
the file transfer to see whether the download has started, how much of the file has been
transferred, and whether there has been an error.

If a file transfer was started using the libURLftpUpload, libURLftpUploadFile, or
libURLDownloadToFile command, you can cancel the transfer using the unload
command.

Uploading, downloading, and memory
When you use a URL as a container, Revolution places the entire URL in memory. For
example, if you download a file from an FTP server using the put command, Revolution
downloads the whole contents of the file into memory before putting it into the
destination container. If the file is too large to fit into available memory, a file transfer
using this method will fail (and may cause other unexpected results).

The library commands libURLftpUpload, libURLftpUploadFile, and
libURLDownloadToFile, however, do not require the entire file to be loaded into
memory. Instead, they transfer the file one piece at a time. If a file is (or might be) too
large to comfortably fit into available memory, you should always use the library
commands to transfer it.

12.5.2 Using a stack on a server
Ordinarily, you use stack files that are located on a local disk. You can also open and use
a stack that is located on an FTP or HTTP server. Using this capability, you can update
an application by downloading new stacks, make new functionality available via the
Internet, and even keep most of your application on a server instead of storing it locally.

Going to a stack on a server:
As with local stack files, you use the go command to open a stack that's stored on a
server:

go stack URL "http://www.example.org/myapp/main.rev"
go stack URL "ftp://user:pass@example.net/secret.rev"

 Note: For such a statement to work, the stack file must have been uploaded as binary
data, uncompressed, and not use encodings such as BinHex.

360

Tip: If you need to download a large stack, use the load command to complete the
download before using the go command to display the stack. This allows you to display
a progress bar during the download.

Revolution automatically downloads the stack file. The main stack of the stack file then
opens in a window, just as though you had used the go command to open a local stack
file.

You can go directly to a specific card in the stack:

go card "My Card" \
 of stack URL "http://www.example.org/myapp/main.rev"

To open a substack instead, use the substack's name:

go stack "My Substack" \
 of URL "http://www.example.org/myapp/main.rev"

Using a compressed stack
You cannot directly open a stack that's compressed. However, since the stack URL is a
container, you can use the URL as the parameter for the decompress function. The
function takes the stack file data and decompresses it, producing the data of the original
stack file. You can open the output of the function directly as a stack.

The following statement opens a compressed stack file on a server:

go decompress(stack URL "http://www.example.net/comp.gz")

The statement automatically downloads the file "comp.gz", uncompresses it, and opens
the main stack of the file.

Saving stacks from a server
When a stack is downloaded using the go command, it's loaded into memory, but not
saved on a local disk. Such a stack behaves like a new (unsaved) stack until you use the
save command to save it as a stack file.

Note: Saving a stack that has been downloaded with the go command does not re-
upload it to its server. To upload a changed stack, you must save it to a local file, then use
one of the methods described in this topic to upload the file to the server.

361

12.6 Other Internet Commands
The Internet library has a number of additional commands for working with web forms,
ftp commands, custom settings and troubleshooting. These commands are documented in
more detail the Revolution Dictionary.

Launching the User's Browser with a URL
To launch the default browser with a URL, use the launch URL command.

launch URL "http://www.runrev.com/"

Note: To render web pages within Revolution, instead of launching an external browser,
use the revBrowser. See the section on revBrowser for more information.

12.6.1 Working with Web Forms
To post data to a web form, use the post command. To encode data to make it suitable
for posting, use the libUrlFormData function. To create multi-part form data (as
described in RFC 1867) use the libUrlMultipartFormData function. To add data
to a multipart form one part at a time, use the libUrlMultipartFormAddPart
function. This can be useful if you need to specify the mime type or transfer encoding for
each part.

12.6.2 Working with FTP
For details on basic uploading and downloading using FTP, see the section above.

The following commands provide additional capabilities when working with the ftp
protocol:

libURLSetFTPStopTime - Sets the timeout value for FTP transfers.
libURLSetFTPMode - Switches between active and passive mode for FTP transfers.
libURLSetFTPListCommand - Switches between sending LIST or NLST formats
when listing the contents of an FTP directory.
libURLftpCommand – sends an ftp command to an ftp server.
libURLftpUpload – uploads data. See the section above for more details.
libURLftpUploadFile – uploads a file, without loading the entire file into memory.
See the section above for more details.
libURLDownloadToFile – downloads data to a file, without loading the entire data
into memory. See the section above for more details.

12.6.3 HTTP methods and http URLs
The basic operations used by the HTTP protocol are called methods. For http URLs,
the following HTTP methods are used under the following circumstances:

* GET: when an http URL in an expression is evaluated

362

* PUT: when you put a value into an http URL
* POST: when you use the post command
* DELETE: when you use the delete URL command with an http URL

Note: Many HTTP servers do not implement the PUT and DELETE methods, which
means that you can't put values into an http URL or delete an http URL on such servers.
It's common to use the FTP protocol instead to upload and delete files; check with your
server's administrator to find out what methods are supported.

HTTP headers
When Revolution issues a GET or POST request, it constructs a minimal set of HTTP
headers. For example, when issued on a Mac OS system, the statement:

put URL "http://www.example.org/myfile" into myVariable

results in sending a GET request to the server:

 GET /myfile HTTP/1.1
 Host: 127.0.0.0
 User-Agent: Revolution (MacOS)

You can add headers, or replace the Host or User-Agent header, by setting the
HTTPHeaders property before using the URL:

set the HTTPHeaders to "User-Agent: MyApp" \
 & return & "Connection: close"
put URL "http://www.example.org/myfile" into myVariable

Now the request sent to the server looks like this:

 GET /myfile HTTP/1.1
 Host: 127.0.0.0
 User-Agent: MyApp
 Connection: close

The ftp URL scheme can be used to create a new file to an FTP server. As with the file
and binfile schemes, putting something into the URL creates the file:

put dataToUpload \
 into URL "ftp://jane:pass@ftp.example.com/newfile.dat"

363

Tip: You can create an FTP directory by uploading a file to the new (nonexistent)
directory. The directory is automatically created. You can then delete the file, if you
wish, leaving a new, empty directory on the server:

-- Create an empty file in the nonexistent directory:
put empty into \
 URL "ftp://jane:pass@example.com/newdir/dummy"
-- Delete unwanted empty file to leave new directory:
delete URL "ftp://jane:pass@example.com/newdir/dummy"

12.6.4 Additional Transmission Settings
The following commands provide additional customization options for the Internet
library:

libUrlSetExpect100 – Allows you to set a limit to the size of data being posted
before requesting a continue response from the server.
libURLSetCustomHTTPHeaders - Sets the headers to be sent with each request to
an HTTP server. See also the section on HTTPHeaders above.
libURLFollowHttpRedirects – Specify that GET requests should follow HTTP
redirects and GET the page redirected to.
libUrlSetAuthCallback - Sets a callback for handling authentication with http
servers and proxies.

12.6.5 Troubleshooting
The following commands and functions can be useful when debugging an application that
uses the Internet library.

resetAll - Closes all open sockets and halts all pending Internet operations.

Caution: The resetAll command closes all open sockets, which includes any other
sockets opened by your application and any sockets in use for other uploads and
downloads. Because of this, you should avoid routine use of the resetAll command.
Consider using it only during development, to clear up connection problems during
debugging.

libURLErrorData - Returns any error that was caused during a download that was
started with the load command.
libURLVersion – Returns the version of the Internet library.
libURLSetLogField – Specifies a field for logging information about uploads and
downloads on screen.
libURLLastRHHeaders - Returns the headers sent by the remote host in the most
recent HTTP transaction.
libURLLastHTTPHeaders - Returns the value of the httpHeadersproperty used for
the previous HTTP request.

364

12.7 revBrowser – Rendering a Web Page within a Stack
Use the revBrowser commands to render a web page within a stack. RevBrowser uses
WebKit (Safari) on Mac OS X and Internet Explorer on Windows. Currently RevBrowser
is not supported under Linux.

Note: revBrowser requires the Studio or Enterprise editions of Revolution.

To create a browser object in a stack, use the revBrowserOpen function. This
function takes the windowID for the stack you want to open the browser in and a URL.
Please note that the windowID is not the same as the stack's ID property.

put the windowid of this stack into tWinID
put revBrowserOpen(tWinID,"http://www.google.com") \
 into sBrowserId

To set properties on the browser, use the revBrowserSet command. The following
commands makes the border visible then sets the rectangle to be the same as an image
named "browserimage":

revBrowserSet sBrowserId, "showborder","true"
revBrowserSet sBrowserId, "rect",rect of img "browserimage"

To close a browser when you finished with it, use the revBrowserClose command.
This command takes the windowID for the stack containing the browser:

revBrowserClose sBrowserId

RevBrowser supports a number of settings and messages. You can intercept a message
whenever the user navigates to a link, prevent navigation, intercept clicks in the browser,
requests to download files or to open a new window.

To try out all these options in an interactive format, download the Internet workshop
from:

http://www.runrev.com/developers/exploring-revolution/the-internet/

Click on the Render a Web Page example, press Run and then explore the revBrowser
Demo Stack.

For a complete list of commands that operate on RevBrowser, press the Show Docs
button in the revBrowser Demo Stack, or open the Revolution Dictionary and type
"browser" into the filter box.

365

12.8 SSL and Encryption
Revolution includes support for using Secure Sockets Layer and the https protocol. It also
includes an industrial strength encryption library you can use to encrypt files or data
transmissions.

Note: Support for SSL, Encryption and http requires the Enterprise edition of
Revolution.

12.8.1 Encrypting and Decrypting Data
To encrypt data, use the encrypt command. The encrypt command supports a wide
variety of industry standard methods of encryption. The list of installed methods can be
retrieved by using the cipherNames function. To decrypt data, use the decrypt
command. For more information on these features, see the Revolution Dictionary.

Tip: If you are using the encryption library on a Windows system, it is possible that
another application will have installed DLLs that use the same name as the ones included
with Revolution to support encryption. You can force your application to load
Revolution's SSL DLLs by setting the $PATH environment variable before loading the
library.

Tip: put $PATH into tOldPath
put <path to SSL DLLs> into $PATH
get the cipherNames -- Force loading of the SSL DLLs
put tOldPath into $PATH

12.8.2 Connecting using HTTPS
You may connect and download data from a URL using https in the same way that you
access an http URL, provided you have the SSL library installed (it is installed by default
in Revolution Enterprise):

put URL "https://www.example.com/store.php"

If there is an error, it will be placed into the result. If you need to include a user
name and password you can do so in the following form:

https://user:password@www.example.com/

12.8.3 Implementing your own secure protocols
To implement your own secure protocol, use the open secure socket variant of
the open socket command. You can specify whether or not to include certification, a
certificate and a key. For more information on the open socket command, see the
Revolution Dictionary.

366

12.9 Writing your own protocol with sockets
If you need to implement your own protocol, you can do so using Revolution's socket
support. To understand this chapter it is assumed you understand the basics of how the
Internet works, including the concepts of sockets, IP addresses and ports. More
information on these concepts can be found in Wikipedia.

Tip: The standard protocols that Revolution support such as http and ftp, discussed
earlier in this chapter, have all been implemented as a scripted library with Revolution's
socket support. You can examine this library by running edit script of button
"revlibURL" of stack "revLibrary" in the Message Box. Beware, this
library is not for the feint of heart. If you change anything, Revolution's Internet
commands may cease to operate.

Opening a connection
To open a connection use the open socket command. The following command opens
a connection to the IP address specified in the tIPAddress variable and the port
specified in the tPort variable. It specifies that Revolution should send the message
"chatConnected" when a connection has been established.

open socket (tIPAddress & ":" & tPort) with message \
 "chatConnected"

To open a secure socket, use the open secure socket variant of the command. To
open a UDP datagram socket, use the open datagram socket variant of the
command. For more information on these variants, see the Revolution Dictionary.

Looking up a host name or IP address
You may look up an IP address from a host name with the hostNameToAddress
function. For example, to get the IP address for the runrev.com server:

put hostNameToAddress("www.runrev.com") into tIPAddress

To get the host name of the local machine, use the hostName function. To look up the
name from an IP address, use the hostAddressToName function.

Reading and writing data
Once Revolution opens a connection, it will send a chatConnected message. To
receive data, use the read from socket command. The following message reads
data from the socket and sends a chatReceived message when reading is completed.

on chatConnected pSocket
 read from socket pSocket with message chatReceived
end chatConnected

367

Once reading from the socket is completed the chatReceived message can be used to
process or display the data. It can then specify that it should continue to read from the
socket until more data is received, sending another chatReceived message when
done.

on chatReceived pSocket, pData
 put pData after field "chat output"
 read from socket pSocket with message "chatReceived"
end chatReceived

To write data to the socket, use the write command:

write field "chat text" to socket tSocket

Disconnecting
To disconnect, use the close socket command. You should store a variable with
details of any open sockets and close them when you have finished using them or when
your stack closes.

close socket (tIDAddress & ":" & tPort)

Listening for and accepting incoming connections
To accept incoming connections on a given port, use the accept connections
command. The following example tells Revolution to listen for connections on port 1987
and send the message chatConnected if a connection is established. You can then
start to read data from the socket in the chatConnected handler.

accept connections on port 1987 with message chatConnected

Handling errors
If there is an error, Revolution will send a socketError message with the address of
the socket and the error message. If a socket is closed a socketClosed message will
be sent. If a socket times out waiting for data a socketTimeout message will be sent.
To get a list of sockets that are open, use the openSockets function. You can set the
default timeout interval by setting the socketTimeOutInterval property. For more
details on all of these features, see the Revolution Dictionary.

Tip: You can see a complete implementation of a basic client server "chat" application
by navigating to Documentation -> Getting Started -> Sample Projects -> Internet Chat –
creating a custom protocol using sockets -> Launch. Most of the scripts for the "server"
stack are in the "start server" button. Most of the scripts for the client are in the stack
script for the "chat client" stack.

368

Chapter 13 Extending the Built-in Capabilities
This chapter covers how to extend the built-in capabilities of Revolution. This topic is
useful for anyone who wants to extend the feature set of Revolution. It is also useful if
you are planning to use Revolution as a front-end to any existing application or set of
processes.

There are many ways to extend Revolution. This topic explains how to run shell
commands, start other applications, read and write to processes, execute AppleScript,
VBScript, send and respond to AppleEvents and communicate between multiple
Revolution-based processes. It also tells you where to get information to create external
commands and functions (code written in lower level languages). We also detail how to
extend the Revolution IDE: how to create a plug-in or edit the IDE itself.

369

13.1 Communicating with other process and applications

13.1.1 Reading and writing to the command shell
Use the shell function to run shell commands and return the result. The following
example displays a directory listing on Mac OS X:

answer shell("ls")

And this example stores a directory listing in a variable on Windows:

put shell("dir") into tDirectory

On Windows systems you can prevent a terminal window from being displayed by
setting the hideConsoleWindows global property to true.

You can choose a different shell program by setting the shellPath global property. By
default this is set to "/bin/sh" on Mac OS X and Linux and "command.com" on Windows.

Tip: The shell function blocks Revolution until it is completed. If you want to run a shell
command in the background, write the shell script to a text file then execute it with the
launch command.

13.1.2 Launching other applications
Use the launch command to launch other applications, documents or URLs. To launch
an application, supply the full path to the application. The following example opens a text
document with TextEdit on OS X:

launch "/Users/someuser/Desktop/text document.rtf" with \
 "/Applications/TextEdit.app"

Tip: To get the path to an application, use the answer file command to select the
application then copy it into your script. Run this in the message box: answer file
"Select an application"; put it

To open a document with the application it is associated with use the launch
document command.

launch document "C:/My document.pdf"

To open a URL in the default web browser, use the launch URL command.

370

launch URL "http://www.runrev.com/"

For more information on launching URLs see chapter 12. For details on how to render
web pages within Revolution, see the section on revBrowser.

13.1.3 Closing another application
Use the kill process command to send a signal to another application, to close it or
to force it to exit. For more details, see the Revolution Dictionary.

13.1.4 Communicating with other processes
Use the open process command to open an application or process you want to read
and write data from. You can then read from the process with the read from
process command and write to it with the write to process command. To close
a process you have opened, use the close process command. The
openProcesses returns a list of processes you have opened and the
openProcessIDs returns the process IDs of each one. For more details see the
Revolution Dictionary.

13.1.5 Using AppleScript and VBScript (Open Scripting Architecture
or Windows Scripting Host)
To execute commands using AppleScript on Mac OS or VBScript on Windows, use the
do as command. do as also allows you to use any other Open Scripting Architecture
languages on Mac OS or languages installed into the Windows Scripting Host on
Windows. To retrieve a list of the available installed languages, use the
alternateLanguages.

For example, to execute an AppleScript that brings the Finder on OS X to the front, enter
the following into a field:

tell application "Finder"
 activate
end tell

Then run:

do field 1 as "appleScript"

To retrieve a result from commands executed using do as, use the result function.
Any error message will also be returned in the result. The following example
displays the result of an addition performed using VBScript:

do "result = 1 + 1" as "vbscript"
answer the result

For more information on the do as command, see the Revolution Dictionary.

371

13.1.6 AppleEvents
To send an AppleEvent, use the send to program command.

If Revolution receives an AppleEvent it will send an appleEvent message to the
current card. Intercept this message to perform actions such as handling a request to quit
your application or opening a document. The following example shows how you could
handle a request to quit:

on appleEvent pClass, pID, pSender
 if pClass & pID is "aevtquit" then
-- call a function that prompts the user to save changes
 put checkSaveChanges() into tOkToQuit
-- returns false if the user presses "cancel"
 if tOkToQuit is true then quit
 else exit appleEvent
 end if
end appleEvent

To retrive additional information passed with the appleEvent use the request
appleEvent data command. The following example shows how you could handle a
request to open a stack:

on appleEvent pClass, pID, pSender
 --appleEvent sent when stack is opened from the finder
 if pClass & pID is " aevtodoc " then
 -- get the file path(s)
 request AppleEvent data
 put it into tFilesList
 repeat for each line l in tFilesList
 go stack l
 end repeat
end appleEvent

For more details see the Revolution Dictionary.

13.1.7 Using Local sockets
If you want to communicate between local applications a common technique that can be
used without code changes on all the platforms Revolution supports, is to open a local
socket and communicate using that. You should choose a port number that is not used by
a standard protocol – typically a high number.

This technique is commonly used when you want to create multiple programs that run
independently but communicate with each other. It is a viable technique for running
background tasks and provides a straightforward way to create an application that
behaves as if threaded – i.e. with benefits of multiple threads. You can design your
application such that additional instances can be launched to perform processing, data
transfer or other intensive activities. Modern OSes will allocate each application to an

372

appropriate processor core. By using socket messaging to communicate with each one
you can keep your main application's user interface responsive and display status
information. The following example shows you how to open a socket to the local
machine:

open socket to "127.0.0.1:10000" with message gotConnection

A detailed discussion of how to create a protocol using sockets can be found in chapter
12.

Tip: To simplify communication between multiple Revolution programs, consider
writing a simple library that sends and receives a handler name together with parameter
data. To call a handler in the other Revolution program, send the handler name and data
to the library. The library will send the data over a socket. In the receiving program
intercept the incoming data from the socket and use it to call the appropriate message
with the parameter data received.

13.2 Extending the Revolution IDE
The Revolution IDE (integrated development environment) has been written using
Revolution. All the components – the Tools Palette, Property Inspector, Script Editor,
Debugger, etc., are implemented as Revolution stacks. The IDE has a series of library
frontScripts and backScripts it uses to provide functionality both for the IDE and for your
application. Some of these libraries are used only by the IDE (e.g. the debugger library),
others (e.g. the Internet library, libURL) are copied into your standalone by the
standalone builder.

This design makes it easy to extend the IDE with plug-ins. If you are an advanced
Revolution developer you can also edit the IDE itself to provide custom functionality.

13.2.1 Creating Plug-ins
You can create a plug-in to help perform tasks that you need to do regularly in the
Revolution IDE. Plug-ins are written as Revolution stacks. (If you need to extend
Revolution using a lower level language, see the section on Externals, below.)

To create a plug-in, save your stack into the Plugins folder, located within the My
Revolution [Edition] folder, inside your Documents folder.

You can now load your stack by choosing its name from the Development -> Plugins
submenu. By default your plug-in will be loaded as a palette. This allows you to operate
the controls in the plug-in while the Revolution IDE is in pointer tool mode. This allows
you to create custom "Property Inspector" style behaviors or other object editing tools.

The Plugin Settings Screen

373

Open the Plugin settings screen from the Development -> Plugins submenu. Choose the
plugin you have created from the Plugin menu at the top of the screen to apply settings to
it.

Figure 88 – The Plugin Settings Screen

Open plugin when:
By default your plugin will load when you chose it from the plugins menu. If you want to
have your plugin load whenever you start Revolution select the "Revolution starts up".
Use this if your plugin is used to set up your environment, for example by loading stacks
that you are working on or adjusting window layout. To have your plugin load when
Revolution quits choose "Revolution quits". Use this if your plugin performs clean up
tasks that you want to have run whenever you exit.

Open as:
Choose the mode you want your plugin to open as. If you choose the invisible option,
your plugin stack will be loaded invisible. Use this option to create a plugin that installs a
faceless library (for example by inserting a button within it into the front or backscripts)
or to perform some other automated task that does not require a visible user interface.

374

Note: Loading from your plugin will not allow you to edit the plugin itself. If you want
to edit the plugin, first load it from the menu then use the Application Browser to make it
toplevel by right clicking on it in the list of stacks and choosing Toplevel from the popup
menu.

Send messages to plugin:
In order to have your plug-in respond as you work in the IDE you need to register it to
receive messages. The IDE can send a variety of messages to the current card in your
plug-in as you change selection, switch tools, open and close stacks, etc. The messages
that can be sent are listed below.

Message Sent when
revCloseStack The user closes a stack in the IDE
revEditScript The user chooses "edit script"
revIDChanged The ID of an object is changed
revMouseMove The mouse is moved
revMoveControl A control is moved with the pointer tool
revNameChanged The name of an object is changed
revNewTool A new tool is chosen
revPreOpenCard A preOpenCard message is sent on changing card
revPreOpenStack A preOpenStack message is sent on opening stack
revResizeControl A control is resized using the pointer tool
revResizeStack A stack is resized
revResumeStack A stack is activated
revSaveStackRequest The save command is executed
revSelectedObjectChanged The selection is changed with the pointer tool
revSelectionChanged The text selection is changed
revShutdown Revolution is quit

Tip: Internally the IDE implements these plugin messages by intercepting system
messages sent my Revolution in the IDE frontScripts and backScripts then sending out a
corresponding message to any loaded plugin. You can look up these messages in the
Revolution Dictionary by removing the "rev" in front of the messages above.

For example, to have your plugin update whenever an object is selected with the pointer
tool, select the revSelectedObjectChanged message. Then insert the following
handler into your plugin card script:

on revSelectedObjectChanged
 -- store the list of selected objects
 put the selObj into tObjectsList
 repeat for each line l in tObjectsList
 -- insert code to operate on each object here

375

 end repeat
end revSelectedObjectChanged

13.2.2 Editing the IDE

Caution: Editing the IDE can easily cause Revolution to become unusable. We
recommend that only advanced users attempt to edit the IDE. We recommend you back
up the IDE prior to making any changes. We do not recommend attempting to edit the
IDE while working on any mission critical project.

To edit the Revolution IDE, turn on Revolution UI Elements in Lists in the View menu.
This causes Revolution to display its own stacks within the Application Browser and
other editing screens. You can now load these stacks to edit them. To allow you to edit
Revolution IDE objects with the keyboard shortcuts, turn on the In Revolution UI
Windows and Contextual menus work in Revolution Windows, options in the Preferences.

The IDE uses the stack revLibrary to provide much of its functionality. The scripts are
stored as a series of buttons and loaded into the frontScripts and backScripts
when the IDE is started. To edit these scripts, go to the Front Scripts or Back Scripts tab
within the Message Box and check the "Show Revolution UI Scripts" checkbox.

Caution: If you make a mistake editing revFrontScript or revBackScript, Revolution
will become non-responsive and you will have to force-quit.

The Script Editor and Property Inspector functionality is provided by two stacks,
revTemplateScriptEditor and revTemplatePalette. These stacks are cloned each time you
open a new Script Editor or Inspector. To make permanent changes you need to apply the
changes to these stacks and save them.

13.3 Externals – code written in lower level languages
Revolution provides an external interface which allows you to extend it using a lower
level language (often C). For example, if you have preexisting code that performs
processing in a lower level language, you can write a user interface in Revolution and
then call this library by writing a simple wrapper around it using Revolution's externals
interface. Revolution supports transmitting data to and from externals, as well as drawing
into image objects within Revolution windows, manipulating the player object, and more.

Note: Some aspects of the built in functionality are supplied in the form of externals.
These include the SSL library, the database library, the revBrowser library, zip library,
video grabber and XML libraries. These libraries can be included in a standalone
application, or excluded if they are not needed – saving disk space.

376

13.3.1 The Externals SDK
We provide a developer kit for writing externals which includes documentation and
examples. You may download this kit from:

http://downloads.runrev.com/resources/externals/revexternalssdk.zip

The following newsletter articles will also help you get started:

External Writing for the Uninitiated – Part 1
http://www.runrev.com/developers/tutorials/advanced-externals-part-1/

External Writing for the Uninitiated – Part 2
http://www.runrev.com/developers/tutorials/advanced-externals-part-2/

Writing Externals for Linux with 2.9 or later
http://www.runrev.com/developers/tutorials/advanced-linux-externals/

13.4 Building a Web Application
Additional documentation for this section is being prepared for the next version of
Revolution. In the mean time we recommend the comprehensive tutorial on this topic
here:

http://www.hyperactivesw.com/cgitutorial/intro.html

377

Chapter 14 Working with Media
One of the most popular uses for Revolution is to create full blown multimedia
applications. Even if you aren't creating a traditional multimedia application, many
applications require a compelling user interface.

This chapter details Revolution's media support. We discuss the image features and
capabilities: how to import and export images in a variety of formats, how to manipulate
images within Revolution, working with masks, the clipboard and screen capture, right
through to animated GIFs. We detail the vector graphic features and explain how to
manipulate vector graphics by script. We then cover the video and audio feature set. Then
we show you how to create custom themed buttons. Finally we given an overview of the
support for visual transition effects.

378

14.1 Bitmap Images
Revolution supports a wide variety of image formats, including the popular PNG and
JPEG formats. PNG images are space efficient and have full support for alpha channels.
JPEG images are good for displaying photos. For more details see the table below.

Format Export Mask Comments
PNG Yes Yes, 1-bit or

alpha channel
Supports gamma adjustment, supports alpha
channels, supports interlacing

JPEG Yes No Supports progressive JPEGs; lossy compression.
Export allows you to set the level of compression

GIF Yes 1-bit GIF87a and GIF89a; supports animation; supports
interlaced GIFs; maximum 256 colors

BMP No No Uncompressed
PBM Yes No 1-bit (black and white)
PGM No No Grayscale
PPM No No
XBM No No
XPM No No 1-bit (black and white)
XWD No No
PICT No No uncompressed

As you can see from the table above, a number of the supported image formats can also
be exported by Revolution.

You can modify images using Revolution's paint tools, or manipulate the binary data by
script or using an external.

You can create images from any of Revolution's native objects, including buttons, fields
and graphics. These can then been exported in a number of formats. You can copy
images from the clipboard or export images to the clipboard.

Revolution can capture a portion of the screen, or the entire screen.

14.1.1 Importing Images
To import an image, choose File -> Import As Control -> Image File. Select the image
file you want to import. This will import the image file into a new image object on the
current card. This is equivalent to executing the import paint command in the
Message Box.

Note: If you want to reuse an image throughout your application, for example as part of
a custom skin for your application, create a substack and import all your images into that.

379

You can then reference them throughout your stack file. For more information, see the
section Creating Custom Skins, below.

14.1.2 Importing Referenced Images
To reference an image file on disk choose File -> New Referenced Control -> Image File.
This creates an image object on the current card and sets its fileName property to the
path of the image file you selected. Referenced images do not expand the size of your
stack and are only loaded from disk into memory when you navigate to the current card
or otherwise display them on screen. Referenced images are ideal where you want to
update the image in an image editor and see the changes in Revolution without having to
re-import.

You may wish to consider creating a folder next to your stack file to contain image files
then using the Inspector to modify the file path to the image to be a referenced path. This
allows you to move the stack and folder of images together onto a different system. for
more information on referenced file paths, see the section File Name Specifications and
Paths.

You can use the standalone builder to copy referenced images into a directory (updating
each image's fileName property) or to copy referenced images into your stack. For
more information see the chapter Deploying your Application.

Important: You cannot use the paint tools or manipulate the binary data of referenced
images. You must import them first. If you want to modify the original file, you can
make changes then export the image – see below for more details.

14.1.3 Import using Screen Capture
To import an image by capturing a portion of the screen, choose File -> Import As
Control -> Snapshot. Select the region of the screen you want to import.

To take a screen capture by script, use the import snapshot command. To specify a
section of the screen to import from without displaying the crosshairs use import
snapshot from rect:

import snapshot from 100,100,200,200

This will create an image object on the current card from the rectangular area specified.

14.1.4 Creating Images
To create an image, drag an image object from the Tools palette to your stack. You may
now paint on the image using the paint tools, set the fileName reference to an image or
manipulate the binary data of the image.

380

14.1.5 Using the Paint Tools
To access the paint tools, press the fold out triangle at the bottom right of the Tools
palette.

Figure 89 – The Graphic Tools

 Tool Usage Keyboard modifiers

 Select Drag to select a rectangular area of an
image

Shift constraints to a
square; command /
control duplicates
selection

 Bucket Fills shapes with color. Will fill any pixel
connected to the pixel you click with the
brush color

Control-click to fill
with transparency

 Spray can Draw an airbrushed color using the brush
shape

Control-click to spray
with transparency

 Eraser Remove color from an area leaving it
transparent. Uses the brush shape

 Rectangle Draw a rectangle shape Shift constrains to a
square; control
creates transparency

 Rounded
rectangle

Draw a rounded rectangle shape (hold
down on the rectangle shape to select this
shape)

Shift constrains to a
square; control
creates transparency

 Oval Draw an oval shape (hold down on the
rectangle shape to select this shape)

Shift constrains to a
square; control
creates transparency

 Regular
polygon

Draw regular polygon shape (hold down
on the rectangle shape to select this shape)

Shift constrains to a
square; constrains
rotation; control
creates transparency

 Polygon Draw polygon shape (hold down on the
rectangle shape to select this shape)

Shift constrains lines
angles to multiples of
22.5°; control creates
transparency

 Line Draw a straight line Shift constrains lines
angles to multiples of

Paint tools

Vector graphics tools

381

22.5°; control creates
transparency

 Freehand Draw a freehand curve (hold down on the
line shape to select this shape). If the filled
option is chosen the beginning and end of
the curve are joined automatically when
you finish drawing

Alt / option prevents
drawing line border;
control creates
transparency

 Pencil Draw a single-pixel-width freehand line Control creates
transparency

 Brush Draw brush strokes using the brush shape Control creates
transparency;
command click to
magnify

 Fill
(brush)
color

Select a color to fill shapes or use with the
brush tools

 Line
color

Select a color to draw lines or use with the
pencil tool

 Brush
shape

Choose a brush shape for use with the
brush, eraser and airbrush tools

To magnify an image, right click it with the pointer tool and choose Magnify from the
menu.

When you edit an image, it will be recompressed into the format specified by the
paintCompression global property.

14.1.6 Scripting with the Paint Tools
Painting by script can be useful if you want the user to be able to see each paint action. If
you want to manipulate the data of an image more efficiently off screen, see the next
section.

To control the paint tools by script, create an image then choose the paint tool you want
to use. Set the appropriate brush, pattern or line size then use the drag command to paint.

The following example creates an image, chooses the brush tool, selects a small circular
brush shape, selects a red color, then draws a line:

-- set the size of the image
set the rect of the templateImage to 100,100,400,400
create image
choose brush tool
set the brush to 8
set the brushColor to red -- could use an RGB triplet here
set the dragSpeed to 20 -- very slow
drag from 120,120 to 300,300

382

For more information, see the entries for the templateImage, tool, brush,
brushColor, brushPattern, dragSpeed, penColor and penPattern in the
Revolution Dictionary.

You may reduce the size of an image using the crop command.

You may rotate an image using the rotate command.

To adjust the quality of the scaling algorithm used when scaling an image, set the
resizeQuality property before setting the image's rect.

14.1.7 Manipulating Binary Image Data
To manipulate the binary data of an image, use the image's imageData property. This
property returns the color and transparency value of each pixel in the image in a
consistent format regardless of the format the image is saved in. The imageData is
stored as binary, with each pixel represented by 4 bytes. To convert it to and from RGB
values use the charToNum and numToChar functions.

For example, the numeric value of the red channel for the tenth pixel is given by the
expression charToNum(char ((4 * 9) + 2) of the imageData of
image). The numeric value of the green channel is charToNum(char (4 * 9) +
3 of the imageData of image); and the numeric value of the blue channel is
charToNum(char (4 * 9) + 4 of the imageData of image).

To manipulate the binary data of an image using an external, use the imagePixMapID
property.

When you set the imageData of an image the image will be recompressed into the
format specified by the paintCompression global property.

14.1.8 Rendering an Image from Objects
Use the import snapshot command to create an image from objects or a region of a
stack. Instead of specifying a rectangle in global coordinates (as described above) specify
a stack or object.

Note: Unlike screen capturing, the stack or object you specify to import an image from
does not need to be displayed on screen. You can create a layout off screen in an
invisible stack then render it into an image.

To import a snapshot of a region of a stack:

import snapshot from 100,100,200,200 of stack "Layout"

383

To import a snapshot of an object:

import snapshot from button 5 of stack "objects"

The import snapshot command creates a new image in the current defaultStack. The
image is encoded using the current paintCompression format.

To save this snapshot directly to a file instead of creating an image, use the export
snapshot command:

export snapshot from the selectedObject to file "snap.jpg" as JPEG

14.1.9 Exporting Images
To export an image in the current format that it is stored in, put it into a binary file using
the URL commands. The following example prompts the user to select a file then export
the image into it:

ask file "Select a file:"
put image "picture" into URL ("binfile:" & it)

To export an image in a different format, use the export command.

export image "picture" to file "picture.png" as PNG

You may also export an image to a variable. See the export command in the Revolution
Dictionary for more information.

14.1.10 Copying and Pasting Images
To copy an image internally without using the system clipboard, simply put it into a
variable or into another image.

put image 1 into image 2

To recompress the image in a different format, use the export command to export it to
a variable then put that variable into an image.

To copy an image to the clipboard, use the copy command.

copy image 1

To paste an image from the clipboard, use the paste command.

To transfer the binary data of an image to and from the clipboard get and set the
clipBoardData["image"] property. See the clipBoardData entry in the
Revolution Dictionary for more information.

384

14.1.11 Working with Animated GIFs
You can import an animated GIF image in the same way you import other images.

Set the repeatCount property to specify how often to play the animation. Setting the
repeatCount to 0 pauses the animation and setting it to -1 causes it to repeat forever.

To change the current frame set the currentFrame property.

Note: If you use an animated GIF as a button icon, it will play simultaneously in each
button it is used for.

14.2 Working with Vector Graphics
In addition to bitmap graphics, Revolution also supports vector graphics. You can create
vector graphics using the graphics tools, or by script. You can manipulate them
interactively in the IDE or by script. You can relayer them, export a description of them
or convert them to bitmap format.

Tip: Animation Engine is a 3rd party library that includes a set of functions for
programming interactive graphic animations. See the Related Software section of our
web site for more information.

14.2.1 The Vector Graphic Tools
To see the graphic tools, unfold the triangle at the bottom right of the tools palette. The
graphics tools are located above the paint tools on the tools palette. The graphic tools
operate in the same way as the paint tools, except that each time you draw a shape a new
graphic object is created. Unlike paint graphics, you can resize and adjust graphic objects
after you have created them. For more information on the individual shapes, see the
section on Paint Tools, above.

14.2.2 Creating Graphics by Script
To create graphics by script, set properties of the templateGraphic then use the
create graphic command. For more information on template objects, see the
section Creating objects off screen using the template objects in Chapter 7.

14.2.3 Manipulating graphics by script
Because each graphic is an individual object, you manipulate its appearance by setting
properties rather than using the drag commands (as with the paint tools, above). You can
control all properties of the graphic object by script including the rectangle, line and fill
properties. You can change a graphic from one type to another (e.g. a rectangle to an
oval) by setting its style property.

385

The polygon style of graphic has a points property which allows you to set the
individual points of a line.

Simple motion can be applied using the move command. For example, to move a graphic
100 pixels to the right asynchronously:

move graphic 1 relative 100,0 without waiting

For more information, see the move command in the Revolution Dictionary.

To program a more complex animation effect, calculate the changes to the points or
rectangles and set these values using timer based messaging. The following example
scales a graphic named "rectangle" down by 100 pixels over the course of 1 second.

local lCount

on mouseUp
 put 0 into scaleGraphic
 scaleGraphic
end mouseUp

on scaleGraphic
 add 1 to lCount
 if lCount > 100 then exit scaleGraphic
 get the rect of graphic "rectangle"
 add 1 to item 1 of it
 add 1 to item 2 of it
 subtract 1 from item 3 of it
 subtract 1 from item 4 of it
 set the rect of graphic "rectangle" to it
 send "scaleGraphic" to me in 10 milliseconds
end scaleGraphic

See the section on Timer based messaging for more information on using timers.

14.3 Working with Video
Revolution supports playback of video with the player object. On Windows and Mac OS,
QuickTime is supported. QuickTime allows playback of a wide variety of file formats,
including MPEG, H.264 and AAC. Revolution also supports the controller, accessing
QuickTime's streaming features and QuickTime Virtual Reality (QTVR).

On Windows systems, the player object can play back video using the Windows Media
subsystem. This has more limited functionality than using QuickTime.

On Linux Systems, the player object can play back video using mplayer. There are some
functionality limitations: alwaysBuffer, the startTime, endTime and

386

playSelection properties have no effect, showController has no effect and play
step forward/play step back do not work reliably.

In addition to these features, Revolution has built-in support for the animated GIF format.
Animated GIF files can be played back without 3rd party software. See above for more
information. Other formats supported by plug-ins in web browsers can be played back
using revBrowser (e.g. Flash). See the topic on revBrowser for more information.

14.3.1 The Player Object
Use the player object to play and interact with video and audio. To create a player object,
drag one onto your stack from the Tools palette. To select a movie file to play, open the
Inspector for the player object and select a file to use as the source. Doing this sets the
player's fileName property.

To stream a movie from an Internet server, set the fileName property to the URL address
of the stream.

To play a player, use the start and stop commands.

start player 1
stop player 1

The following table describes commonly used player properties:

Property Name Function Example
alwaysBuffer Forces the player to

be buffered, allowing
objects to be drawn
on top and the current
frame to be printed

set the alwaysBuffer of
player 1 to true

showController Shows or hides the
QuickTime controller

set the showController
of player 1 to false

currentTime Sets the current frame set the currentTime of
player 1 to 1000

duration &
timeScale

The duration of the
movie and the
number of intervals
per second of a movie

put (the duration of
me/the timeScale of me)
into tRunTime

currentTimeChanged Message sent when
the current frame
changes

on currentTimeChanged
pInterval
 put pInterval into
field "Time Code"
end currentTimeChanged

startTime The start time of the
selection

set the startTime of
player 1 to 500

endTime The end time of the set the endTime of

387

selection player 1 to 1000
showSelection Show the selection in

the controller
set the showSelection of
player 1 to true

playSelection Play only the
selection

set the playSelection of
player 1 to true

playRate The speed to play the
movie. Set this to -1
to play backwards

set the playRate of
player 1 to 2

looping Causes playback to
loop

set the looping of
player 1 to true

playLoudness Set the volume set the playLoudNess of
player 1 to 50

tracks List of tracks within
the movie

put the tracks of player
1 into tTracksList

enabledTracks Enable or disable
tracks

Set the enabledTracks of
player 1 to 3

callbacks A list of messages to
be sent when the
movie reaches
specified time points

set the callbacks of
player 1 to "1000,
nextScene"

The following properties can be used to control a QTVR movie: pan, tilt, zoom,
currentNode, nodeChanged, hotspots, and hotSpotClicked.

For more information on any of these terms, see the Revolution Dictionary.

14.3.2 Preventing Use of QuickTime on Windows
To force Revolution to use the Windows Media subsystem instead of QuickTime on
Windows systems, even when QuickTime is installed, set the dontUseQT global
property to true.

Important: You must set dontUseQT to true before you perform any movie or player
related action.

14.4 Working with Sounds
In addition to playing back sound in a wide variety of formats using the player object,
Revolution has in-built support for playback of WAV, AIFF and AU format audio clips.

Note: We recommend you use the player object for playing audio as it supports a wide
range of formats and compression types. Use the audio clip when you need basic audio
playback on systems that do not have any of the 3rd party libraries supported by the
player object installed.

388

14.4.1 Importing an Audio Clip
To import an audioClip choose File -> Import as Control -> Audio File. This will import
the selected audio file into the current stack as an audioClip.

14.4.2 Playing an Audio Clip
To play an audio clip:

play audioClip 1

To stop playing

play stop

To set the volume:

-- sets the volume to 50%
set the playLoudness of audioclip 1 to 50

14.5 Working with Visual Transition Effects
Revolution supports visual transition effects when changing card or hiding and showing
objects. There are three types of effect support: built-in effects which work on all
platforms, QuickTime effects which work on systems that have QuickTime installed and
Core Image effects which work on Mac OS 10.4 or later.

Use the visual effect command to display a visual effect. To go to the next card
with a dissolve transition effect:

visual effect dissolve slow
go next card

To make changes to objects on the screen with a visual effect (e.g. hide, show or move
them), first lock the screen, then make the changes, then unlock the screen:

lock screen
hide image 1
show image 3
unlock screen with visual effect "wipe right"

To choose a QuickTime effect using the effect chooser dialog use:

answer effect
-- store the visual effect as a custom property
set the cEffect of this stack to it

Then:

389

visual effect (the cEffect of this stack)
go next card

For more information on visual effects, see the visual effect command in the
Revolution Dictionary. To try out the different visual effects available in an interactive
format see the Multimedia Workshop, available at:

http://www.runrev.com/developers/exploring-revolution/multimedia/

14.6 Creating Custom Skins
In addition to its support for system native controls, Revolution allows you the ability to
create an entirely custom look, or skin, for your application. All of the built-in elements
can be replaced with themed graphics allowing you to create rich multimedia. For
example, Revolution buttons support "icons" of unlimited size which can be used to
replace the native appearance of a button entirely. Windows can be irregularly shaped
and even contain holes and alpha mask (variable) transparency. All of Revolution's
objects support a variety of transfer modes or inks. Stacks can take over the entire screen
or be displayed with a backdrop.

14.6.1 Custom Themed Buttons
To create a custom button, first create a regular button. Open the Inspector for the button
and set its style to Transparent. Turn off the Show Name property. Next, switch to the
Icons & Border pane in the Inspector. Turn off the Hilite Border property. You can now
select any image you have imported to use as an icon for the button. To set the mouse
down state, set the hilite icon. To set the roll over state set the hover icon.

Important: A button "icon" may be an image of any size in Revolution, allowing a
completely custom look.

Tip: To use the same set of images as icons throughout your stack file, create a substack
and import all your theme images into it. Set the ID property of each image to a high
value (between 10,000 and 100,000) so that it will be unique. You can now reference that
image anywhere in your application. If you want to change theme, you only need to
replace that image with another image and give it the same ID.

Tip: Any object in Revolution can behave like a button. For example, if you want to
create a graphic that responds when a user clicks on it, create the graphic and add a
mouseUp handler to it, in the same way you would with a button.

390

14.6.2 Irregular Windows
To create an irregularly shaped window, import or create an image that has a
transparency mask. Then use the Stack Inspector to choose that image as the stack's
Shape. To change the shape by script, set the windowShape property. Many modern
window managers support alpha blended windows (variable degrees of transparency). To
create a window with an alpha channel, import a PNG that contains an alpha channel and
set the windowShape to this image.

14.6.3 Blend Modes (transfer modes or inks)
Blend modes determine how an object's colors combine with the colors of the pixels
underneath the object to determine how the object's color is displayed. To set the blend
mode of an object, use the Blending pane in the Inspector or set the object's ink
property. All objects in Revolution support blend modes, with the exception of stacks.

set the ink of image "picture" to "blendBurn"

For more information, see the ink entry in the Revolution Dictionary.

To set the degree of transparency, set the object's blendLevel property. All
Revolution objects (including stacks) support blendLevel:

set the blendLevel of button 1 to 50 -- sets a button to
50% transparent

14.6.4 Full screen mode
A stack can be displayed as full screen by setting its fullScreen property to true:

set the fullScreen of this stack to true

Set this property back to false to exit full screen mode.

If you want to hide or show the menu bar on Mac OS X use the hide menubar or
show menubar commands:

hide menuBar
show menuBar

Similarly, use hide taskbar and show taskbar on Windows systems to hide and
show the taskbar.

14.6.5 Displaying a Backdrop
To display a backdrop set the backDrop global property. You may set the backDrop
to a solid color or to the ID of an image.

set the backDrop to "black"

391

To remove the backDrop:

set the backDrop to none

392

Appendix A: Shortcuts Reference

 Windows / Linux Mac OS X
The Development Environment
Choose run (browse) tool Control-9 Command-9
Choose edit (pointer) tool Conttrol-0 Command-0
Toogle between run and edit tools Control-alt-tab Command-option-tab
Hide or show palettes Control-tab Command-control-tab
Display context menus when running Control-shift-right

click
Command-control-
shift-click

Save all open stacks Control-alt-s Command-option-s
Apply default button in Save dialog Return Return
Apply non-default button in save dialog Control-1st letter of

button
Command-1st letter of
button

Navigation
Go to the first card Control-1 Command-1
Go to the previous card Control-2 Command-2
Go to the next card Control-3 Command-3
Go to the last card Control-4 Command-4
Go to the recent card Control-5 Command-5
Go to the top or bottom of a field Control-up/down

arrow
Command-up/down
arrow

Objects
Select all Control-a Command-a
Duplicate Control-d Command-d
Create card Control-n Command-n
Nudge control Arrow keys Arrow keys
Nudge control by 10 pixels Shift-arrow-keys Shift-arrow-keys
Open object inspector for selection Return Return
Open stack inspector Control-K Command-K
Remove styles from selected text Control-; Command-;
Equalize heights of selected controls Control-shift-= Command-shift-=
Equalize width of selected controls Control-= Command-=
Magnify image with paint tool Control-right-click Command-click
Apply transparency with paint tool Control-click Control-click
Constrain paint tool selection to a
square

Shift Shift

Constrain object aspect ratio Shift Shift

The Script Editor
Edit script of selected object Control-e Command-e
Edit card script Control-shift-c Command-shift-c

393

Edit stack script Control-shift-s Command-shift-s
Edit script of object under mouse Control-alt-click Command-option-click
Apply changes Enter Enter
Apply changes and close Enter twice Enter twice
Apply changes and save stack Control-s Command-s
Comment out selected lines Control-hyphen Command-hyphen
Remove comments Control-shift-hyphen Command-shift-hyphen
Switch to find mode Control-f Command-f
Find next Control-g Command-g
Find selected text Control-l Command-l
Complete terms Control-number of

term
Command-number of
term

Format current handler Tab Tab
Look up a term in the Dictionary Control-click term Control-click term

The Message Box
Open/close message box Control-m Command-m
Switch to first tab in message box Control-m Command-m
Clear message field Control-u Command-u
Scroll through recent messages (single
line)

Up/down arrow Up/down arrow

Scroll through recent messages
(multiple line)

Alt-up/down arrow Option-up/down arrow

Execute message (single line) Return Return
Execute message (multiple line) Enter Enter

The Debugger
Step Into Space Space
Step Over Alt-space Option-space
Run Enter Enter
Abort Control-. Command-.

