
Introduction to U3-Aware Application Building in Revolution

Contents
Contents..1
Section 1: Revolution U3 Documentation..1

Background...1
Requirements..1
Technology Overview...2
U3 Package Overview..2

Standalone Settings and U3..4
Handling U3 actions in Revolution..4

U3 Certification..5
Section 2: Sample Revolution program for U3..6

The EULA..6
Configuration..7
Starting Stopping and Running the Player...7
Cleanup...8
Uninstall...8

Finally...9

Section 1: Revolution U3 Documentation

Background
Traditional flash drives allow you to store information but they do not allow you to take your
applications and settings with you. U3 “smart” drives are flash drives, but with a difference, you
can install your entire user experience – both applications and data, making your computer
environment completely portable.
Its technically possible to run a program off any standard flash drive or other removable media.
However U3 offers several benefits: a “launch pad” that operates like the familiar standard “Start”
menu; a method for applications to bring with it all of its settings such as preferences and registry
entries; and a guarantee that once you eject a drive the “host” system is left unchanged. Finally, the
U3 platform is backed by major storage vendors. There are millions of U3-smart flash drives being
shipped every month, making this rapidly growing platform an exciting new distribution
opportunity for application vendors.
In order to run correctly from a U3 drive, an application needs some simple modifications. This
document tells you how to produce a U3 smart application using Revolution.

Requirements
In order to use a U3 drive you will need the following

1. A U3 compliant flash drive.
2. One of the following operating systems (all Windows)

1. Windows 2000 with SP 4 and later
2. Windows XP all versions and Service Packs
3. Windows server 2003

In order to build U3 applications with Revolution, you will need Revolution version 2.7.3 or later.
Note that to use the sample program and its associated stacks you will need to have QuickTime

installed.

Technology Overview
Each U3 device pairs with a program called the “U3 Launchpad”. The easiest way to think of this is
like a Start menu, except that it is attached to the U3 drive, rather than a specific computer. The
Launchpad allows the user to run, install, and uninstall applications on the U3 drive.
A U3 application has a life cycle consisting of six phases:

1. Installing the U3 package onto the drive
2. Configuring the host machine (the machine the drive is connected to)
3. Starting the U3 application
4. Stopping the U3 application
5. Cleaning up the host machine
6. Uninstalling the U3 package from the drive.

During a U3 application's life cycle it will be start up with parameters corresponding to these six
phases. For example, when the application is installed it could be started with a parameter -u3install
. The correspondence between actions and which application gets run with a specific parameter is
defined by the manifest file.
When installing the Revolution IDE on a U3 drive, Revolution uses this action to request entering a
license key. The installation can only proceed if the correct license key is entered.
The configuration action happens when the U3 application is first run on a host machine (after
installation or when the drive is inserted into another machine). This allows the application to
configure the host machine before it is started. This message could be used to check the host
computer’s permissions for example.
After installation and configuration, an application can be started and stopped as many times as
needed. Each time it is launched from a U3 drive the “start” action is performed.
When a user chooses to eject the U3 drive (either by using the eject button in the Launchpad or
physically removing the drive), the Launchpad will invoke the stop action. At this point the
application must quit all running instances. After an application has been stopped, the Launchpad
will invoke the cleanup action, to ensure the application leaves the computer in the same state it was
in before it was configured.

U3 Package Overview
A U3 application package comes in the form of a .u3p file. The user can directly install this file onto
the drive using the Launchpad.
A u3p file is essentially a .zip file with a different extension1 and a number of folders. This zip
archive contains the following four folders (or a subset thereof):

1. Manifest
2. Host
3. Device
4. Data

The manifest directory contains all the configuration files for the U3 package. At this point in time2

1 Not all ZIP compression types are compatible with the U3 Launchpad. Revolution uses the compatible deflate
compression type.

2 This may depend on the version of the Launchpad. Refer to U3 documentation for more details.

it is required that the directory contains at least the following two files: a file manifest.u3i and an
icon file for the application.
The manifest.u3i is an XML file that describes the applications properties and actions to perform at
each stage of the application’s life cycle. For example, it defines the application’s title and points to
its icon file (which must be in the manifest directory). In particular, the manifest file defines which
actions the application much perform in case of installation, configuration, start, stop, cleanup and
uninstall.
In Revolution this is all handled automatically by using the Advanced U3 Settings in the Standalone
Application Settings dialog. For more information about the format of the manifest file, please refer
to the U3 documentation3.
The Data directory contains all the persistent configuration files associated with the U3 application.
Such files could include skins, templates, other media files, etc.
The Host directory contains the application executable and related files such as DLLs that are
required to execute it. Before the application is started, the Launchpad will extract the U3
application files for the U3 host exec directory to a temporary directory on the host machine. This
means that the actual application will run form the host machine! One of the reasons for this is
application stability, if, for example, the drive is physically ejected, the application will maintain
stability.
The Device directory contains the application files that stay on the drive. This should contain files
that do not have to be copied to the host machine to maintain program stability, e.g. infrequently
accessed files such as a game level that needs to be loaded only when the player reaches that level.
You can access the locations of these directories through the use of system environment variables.
For example, the location of the Host Exec folder on the host machine (after the application was
started) can be referenced via U3_HOST_EXEC_PATH. Thus, in Revolution this is available
through the use of $U3_HOST_EXEC_PATH. Please be aware that these paths will contain “\” as
directory separators instead of Revolutions “/”. Thus, you will need to do something like

local tU3HostExecPath
put $U3_HOST_EXEC_PATH into tU3HostExecPath
replace "\" with "/" in tU3HostExecPath

Alternatively, you can obtain the U3 paths using the following functions in Revolution (by pasting
them into your scripts):

function u3HostPath
local tHostPath

 put $U3_APP_DATA_PATH into tHostPath
 replace "\" with "/" in tHostPath
 return tHostPath
end u3HostPath

Similarly one can define functions such as:
1. u3DataPath (using $U3_APP_DATA_PATH)
2. u3DevicePath (using $U3_APP_DEVICE_PATH)
3. u3DocumentPath (using $U3_DEVICE_DOCUMENT_PATH)

Use the Documents folder on the U3 drive to store user modifiable data, e.g. a text document
created by a text editor.

Standalone Settings and U3
Revolution provides the ability to directly and easily build U3 applications. The Standalone Builder
3 Please go to http://www.u3.com for U3 documentation.

http://www.u3.com/

now provides the additional option to build you application for U3 drives through a setting on the
Windows pane of the Standalone Settings.
Checking the box to build for U3 will build a standard U3 application, that will not handle u3install,
u3configure, u3cleanup and u3uninstall messages. The Revolution engine will handle everything
that is required.
The advanced settings for U3 allow the user to include individual files or folders in specific folders
of the U3 package, namely the Host, Device and Data folders. Furthermore, it allows the user to
select actions that will be invoked by the LaunchPad, and thus can be handled by your application
through the use of the startup handler and its argument.

Handling U3 actions in Revolution
Revolution provides an elegant and simple way of dealing with U3 actions through the use of
arguments to the startup handler. The startup handler is now provided with a single argument being
the action the application is to deal with.
The Revolution Engine will start up your application with one of the following arguments passed to
its startup handler:

1. u3install
2. u3configure
3. u3cleanup4

4. u3uninstall
5. u3launch5

Please note that your application will only receive these arguments if the corresponding U3 actions
have been selected in the Advanced U3 Settings dialog (see above).
After the LaunchPad has invoked an action, it expects the application to quit as soon as it has
handled any of the messages above (except for u3launch). When exiting your application, the
LaunchPad determines if the action was successful through the error code returned. To return error
codes, use the quit command followed by a number. A 0 should be used to indicate success, any
other number will indicate failure. For example:

on startUp pMode
switch pMode
case "u3install"

if (user_has_correct_privileges) then
quit 0 – the installation can continue

else
quit 1 – the installation cannot continue

end if
case "u3cleanup"

quit 0
case "u3configure"

quit 0
case "u3uninstall"

quit 0
case "u3launch"

-- application started from U3 drive
break
case empty
default

-- application running normal, not from U3 drive
break

4 Any U3 manifest is required to include the hostCleanUp action. This is because of a bug in an earlier version of the
LaunchPad. In order to make this transparent, Revolution handles this automatically through the use of a dummy
action if cleanup is not selected in the advanced settings thus making sure that your application will certify.

5 This argument is provided to the startUp handler if the program is starting up from a U3 environment.

end switch
end startUp

You can determine if the application is running from a U3 drive by setting a flag when receiving the
u3launch mode in your startup handler, or checking environment variables.
For more information on which environment variables are available, please refer to the U3
documentation.
Finally, you should ensure you handle the u3eject message.
A user can eject a U3 drive in two ways: safely (using the U3 Launchpad’s eject button) or
physically by removing the U3 drive from the U3 connection of the host machine.
In both cases the Revolution engine will send a “u3eject” message to the application's main-stack
with an argument pType being one of “safe” or “physical”, depending on the type of eject.
If pType is “safe” the application can take as much time as it needs to shut down, however, it must
shut down, otherwise it will violate the U3 specifications. If pType is “physical” the application has
no more than 4 seconds to respond, before it is forcefully terminated.

U3 Certification
If you wish to advertise your application is U3 compliant and make your application available on
the U3 Software Central portal, it is required that you certify your application as being U3
compliant.
This involves running a few tests on your u3 package and the application itself. Some of these tests
should automatically succeed as the package was created by Revolution and thus conforms many of
the U3 standards. However you will also need to ensure your application is not hard coded to leave
any changes on the users system. For more information on certification please refer to the U3
website6.

6 http://www.u3.com

Section 2: Sample Revolution program for U3
This section will describe a sample program written in Revolution for a U3 drive. You can access
this example stack and its source code in the Resources/Examples folder of your Revolution
installation, or download it from our web site.
This example program is a simple music player that allows the user to play music from a U3 drive,
and add new music to their collection on the drive by drag dropping music files onto the player
interface.
This sample application will demonstrate the life cycle of a U3 application as follows:

1. On installation it displays a EULA (End User License Agreement) and the installation is
only allowed to proceed the user agrees to the EULA.

2. On configuration, the host machine’s registry is set up to contain the initial position into the
play list.

3. Throughout use of the application the registry is updated to indicate the current position in
the play list.

4. When the machine is cleaned up, the registry entry is copied back to the U3 device and
removed, and thus the registry on the host machine is left unchanged.

5. When the application is uninstalled, a dialog will ask if the user wants to keep his or her
music files on the drive or remove them.

We started by creating an application that is able to play music files. It has a simple stub function
that it calls to find the play list, its position in the play list and the location of the music files. It also
has a stub function that saves the current index in the play list.
We implemented the following steps in order.

The EULA
We want our application to display a EULA when it is installed so that the application can only be
installed on a U3 drive if this is accepted. We shall also add functionality that disables the program
if it is not run from a U3 drive, in this case simply to demonstrate this capability.
First, we need a EULA dialog, this has been included in the Player template application as a sub-
stack called “EULA”.
To display this dialog on installation we put the following code in the startup handler of the
mainStack:

on startup pMode
switch pMode
case "u3install"

hide me
go to stack "EULA"

break
end switch

end startup

The Launchpad waits for an application to quit so that it can determine what to do based on the quit
code. Thus, the EULA stack implements the following:

on agreeToEULA
quit 0

end agreeToEULA

on disagreeToEULA
quit 1

end disagreeToEULA

We want to add capability in to make sure that the application only runs from a U3 drive. We only
need to add the following to the startup handler (continuing with our handler above):

on startup pMode
switch pMode
case "u3install"

hide me
go to stack "EULA"

break
case "u3launch"

-- allow handler to continue
break
case empty

quit
break
end switch

end startup

Of course, for optimal user interaction, it may be better to provide a dialog explaining that the
application can only be run from a U3 drive, and should not be run otherwise.

Configuration
The first time the application runs, the U3 configuration action will be invoked, which in
Revolution translates to the argument “u3configure” to the startup handler.
We set the play list registry entry to its initial value here:

on startup pMode
switch pMode
case "u3install"

hide me
go to stack "EULA"

break
case "u3configure"

setupRegistry
break
case "u3launch"

-- allow handler to continue
break
case empty

quit
break
end switch

end startup

The setupRegistry handler sets up the registry, and quits the program:

on setupRegistry
get setRegistry("HKEY_CURRENT_USER …

(Please refer to the stack script of the Player stack for the complete setUpRegistry handler.)

Starting Stopping and Running the Player
We do not need to do any work for U3 with regards to running the program. When the program is

started, a u3launch parameter is provided to the startUp handler.
In order to make it much easier for us to develop this program, we want to make sure that any paths
point to local mirrors when the program is in development. Thus, we have provided a
getMediaPath() function that returns the folder that contains the music of the player on the drive
only if the program is running from a U3 drive.

Cleanup
At this stage, all that is required is to reset the registry, thus we augment our startup handler, adding
a handler to clean the registry:

on startup pMode
switch pMode
case "u3install"

hide me
go to stack "EULA"

break
case "u3configure"

setupRegistry
break
case "u3cleanup"

cleanupRegistry
break
case "u3launch"

-- allow handler to continue
break
case empty

quit
break
end switch

end startup

(Please refer to the stack script of the Player stack for the complete cleanupRegistry handler.)

Uninstall
At this point, we will show a dialog asking the user if he or she wishes to delete the player’s music
files from the U3 drive.
Once again, we created a sub-stack for this dialog. This dialog stack will quit 0, deleting or keeping
files depending on the users choice:

on startup pMode
switch pMode

case "u3install"
hide me
go to stack "EULA"

break
case "u3configure"

setupRegistry
break
case "u3cleanup"

cleanupRegistry
break
case "u3uninstall"

hide this stack
go to stack "Dialog" of this stack

break
case "u3launch"

-- allow handler to continue

break
case empty

quit
break

end switch
end staruUp

Finally...
Take a look at the stack source to see how to copy music files to the device when drag dropped onto
the player.
It would be easy to extend this program to include more advanced features. For example, you could
include an option to select a specific track, to reorder the play list, to play the list randomly, or to
toggle playback looping.
This example U3 application took only a couple of hours to put together. This demonstrates the
power of Revolution to quickly and efficiently develop an application that works correctly on the
U3 platform.
Enjoy creating your own U3 applications with Revolution!

	Introduction to U3-Aware Application Building in Revolution
	Contents
	Section 1: Revolution U3 Documentation
	Background
	Requirements
	Technology Overview
	U3 Package Overview

	Standalone Settings and U3
	Handling U3 actions in Revolution

	U3 Certification

	Section 2: Sample Revolution program for U3
	The EULA
	Configuration
	Starting Stopping and Running the Player
	Cleanup
	Uninstall

	Finally...

