Getting Started with Revolution

This tutorial will give you an overview of the objects and components you will use when building
applications. It describes how to place and manipulate objects in your application as well as explaining
the inner workings of Revolution. This knowledge will help you build efficient applications quickly.

Stacks, Cards and Objects

File Edit Tools Object Text D View Window Help

Applications in Revolution are known as stacks and the i "'
separate screens which make these up are called S—
cards. A stack can contain any number of cards and
may also contain substacks. The substacks will
generally provide specialist actions or implement
specific parts of your application.

Objects can be placed on cards by dragging them from
the Toolbar (which is shown on the left). Once an
object has been placed on a card it can be moved
around by further drag and drop actions or by using the
objects property inspector.

Getting Started with Revolution - 1 Created using ScreenSteps

The Toolbar

The toolbar contains all the objects you would normally

i)) O Tools

gxpect to use in an application, sgch as buttqns, text oz | _EE__ —

fields and scrollbars. It also provides the main method

of switching between edit and run modes, which are L

the two modes which Revolution operates in. When in —

edit mode objects can be placed on the cards, resized :I S Bunons

. . e ilabel:; |J |

and edited. When in run mode no editing can take —

place but buttons etc can be clicked and results E T

observed. Fields EE E]
(B(S
-8

Scrollbars @ o

I‘ 0H)
Image Area— |

RCRCIE
e
S5 E

Ry

Sy #eiev

Quicktime Player

Graphic Tools

Paint Tools

Object Properties

' Revolution File Edit Tools Object Text Development View Window Help

B g m woe W2 A S B A

Inspector Script _Message Box |Ungroup Edit Croup Select Grouped | Mess: ors | RevOnline Resource Center Dictio

Every object in Revolution has associated properties
which specify how it looks and behaves. These can be
altered when Revolution is in edit mode and the
easiest way to do this is using the Property Inspector. =

This can be opened by selecting the object and clicking ' L s e
the inspector button on the menu bar, by right clicking cm Gopr

the object and selecting Property Inspector from the - ; G sk
resulting menu or, alternatively, by double clicking the

object itself.

Untitled 1 *

Getting Started with Revolution - 2 Created using ScreenSteps

The Property Inspector

The Property Inspector displays all of the object's ' “““'"""" SR 2’1’ DZ“'”"“"' = w‘""'l’" :“"’ﬂc
properties, from it's name and title to it's display — e
settings. The best way to find out what a property 8
does is to create a stack and alter it's settings,
observing the results. Some of the more important

features however are summarised below.

Name | Untitled 1
Title
Vi s

Controls [default [N]
S
() Metal texture
() Live Resizing
® Shadow
visible
J underline links
O Fon inting

Ei

Buffer display
[Purge stack on close
() Purge window on close

() Can'tdelete

[Can't modify

() User can't abort scripts =
The Lock Palette
This locks the property inspector to the current object. 0 stack "Untitled 2°, ID 1004
If you request to see a different object's properties a ®
new inspector will be opened, thus allowing you to view [Basic Properties ﬁ =
multiple object's properties at once. |

The Selection Menu

" @ Revolution File Edit Tools Object Text View Window Hell

The selection menu lets you choose which object's
properties you want to view. When clicked it will bring 7

up a list which contains all the objects in your current : — . ==
application. When you select one of these the property ||+ ﬁ e
inspector will update to show that object's properties. : \

[button "Button* [1]

=]
=]
L]
L]
=]
(=]
e
8
(=]
]
e
=]
O cn
O an
O user

Getting Started with Revolution - 3 Created using ScreenSteps

The Geometry Manager

The Geometry Manager is used to specify how objects
should act when the stack they are contained within is
resized. It lets you specify links between the selected
object and either the side of the stack or another object
within it. These links control how the selected object
will resize and reposition itself when the stack size
itself is changed. The links can be either relative or
absolute, meaning that the selected object will always
be a set number of pixels away from the other object or
a set percentage away.

(@) button “Button®, ID 1004

(
L Geometry

@® Scale selected object
() Position selected object

800
1 op object

Selected
object

—

g

Left object

Right object

[} Prevent object clipping text

Horizontal Scrollbar

! Vertical Scrollbar

) Limit object

Width Height

r'a". | n. M | n.

Max. Max.

(Remove All)

Getting Started with Revolution - 4

Created using ScreenSteps

Writing Scripts

. Revolution File Edit Tools Object Text Development View Window Help

B g m e g W2 A W A

Inspector _ Script _Message Box | Ungroup _Edit Group Select Grouped | Mess: Errors | RevOnline Resource Center _Dictionary

Once an object has been created and assigned
properties it's behaviour can be specified by giving it a
script.

Untitled 1 *

Scripts in Revolution send and handle messages which || == R
control action. Some messages, such as mouseUp, = Conn

. . - Send Message
are sent automatically by the system while other, user == il

messages, are sent by making what is equivalent to a
method call. The messages an object sends and how
it handles them specify how it reacts to events and
generally behaves.

Within Revolution all scripts are written in the script
editor. The easiest way to view this is to ensure the
object whose script you want to edit is in focus and
then click the script button on the menubar.
Alternatively the object can be right-clicked and the
‘edit script' option can be chosen from the menu which
appears.

Messages and the Message Path

All messages sent in Revolution are passed alonga
message path until a handler for the message is found.
The path contains any scripts which have permission
to deal with the message being passed and consists of
two sets of system scripts and any user scripts which
are related to the object which sent the message. The
order of the path is fixed to control who/what gets
access to the message first and ensures standard
behaviour is adhered to.

The first stop on the message path is always the
system front scripts. These deal with any system
messages which the user, typically, should not change
the behaviour of. If a handler is not found in the front
scripts the script of the object which the message was
sent from is checked. If that also doesn't have a
handler the message is passed to the script of any
group which the object is a member of. If the object is

Getting Started with Revolution - 5 Created using ScreenSteps

not in a group, or if no handler was found, the message
is next passed to the card script and then the stack
script which the object is a member of. If a handler is
not found in these the system back scripts are
checked. These scripts handle system messages
which the user may change the behaviour of if they
choose. If, at this point, a handler still hasn't been
found it means that it does not exist and an error will
be thrown.

The Application Browser

In order to see the path which a message will take PPy W
through the user scripts the Application Browser can

be used. This displays a list of stacks and any cards,
substacks, groups or objects which are placed within
them.

All the stacks are displayed in the left-hand column and
can be expanded to show the substacks and cards
they include. When a card within the stack is clicked

it's contents are displayed in the right-hand column of 866 -
the Application Browser. Every object on the card will v Mt

AudioClips

be displayed as well as details of what it is, whether it @ veocips
is visible, whether it can be selected, the layer it is on
and how many lines of script it has. If you want to view
the system scripts as well as the user scripts in the
Application Browser you should select Revoltuion Ul
Elements in List from the View menu.

Getting Started with Revolution - 6 Created using ScreenSteps

Message Path Example

Imagine one of the buttons in the screenshot to the
right is clicked by a user. This will cause a mouseUp
button to be sent by the Revoltuion engine. This
message must be handled somewhere in the
application. Let's assume that the only handler in the
user scripts is the one in the script of The_Mainstack,
as shown in the screenshot. The path the message
will take through the application is outlined below.

The message will firstly be passed to the Revolution
Front Scripts where a handler will not be found. Next it
will go to the script of the button which was clicked.
We can see from the Application Browser that the
scripts of the buttons are all empty so we know that a
handler also won't be found here. From the shot of the
stack we can see that the buttons are all part of a
group, ButtonGroup. The script of this will therefore be
the next stop on the message path followed by the
card script and then the script of the stack which the
button is placed on, in this case The_Substack. At this
point a handler has still not been found. Checking the
application browser we can see that The_Substack is a
substack of The_Mainstack, as it is indented
underneath The_Mainstack. Therefore, instead of
passing the message to the backscripts it will instead
be passed to The Mainstack. We know this has a
handler so the message path will stop here. If
The_Mainstack did not have a handler the message
would have been passed to the Revolution Back
Scripts which contain a mouseUp handler and would
have stopped an error being thrown.

Getting Started with Revolution - 7

Created using ScreenSteps

	Stacks, Cards and Objects
	The Toolbar
	Object Properties
	The Property Inspector
	The Lock Palette
	The Selection Menu
	The Geometry Manager
	Writing Scripts
	Messages and the Message Path
	The Application Browser
	Message Path Example

